Informing BC Stakeholders

You are here

Publications Library

  • Authors: The Pacific Climate Impacts Consortium Publication Date: Apr 2022

    As a consequence of global warming, the world's glaciers have been shrinking. Changes to glaciers in BC could have wide-ranging impacts to BC's ecosystems and human communities, across multiple sectors. Remote sensing data has been invaluable in measuring and characterizing changes to the world's glaciers. Recent research published in Remote Sensing of the Environment using such data shows that western Canadian glaciers have been melting at an accelerating rate and examines how this is related to changes in seasonal temperature and precipitation. Here we discuss what these results tell us about changes to western Canada's glaciers.

  • Authors: The Pacific Climate Impacts Consortium Publication Date: Jan 2022

    As the climate warms, the Earth's cryosphere, comprised of snow, ice and frozen soil, including permafrost, has been shrinking. Changes in snow cover, depth and the timing of snow melt can have impacts on ecosystems and human communities. Data on snow cover and depth is used to identify historical trends and provides a baseline with which to compare projected future changes.

    Recent research published in Atmosphere-Ocean examines trends in snow cover as measured at observing stations by ruler and sonic sensors, looking at how snow cover has changed over the 1955-2017 period and comparing the two methods of measurement. In this Science Brief we discuss what these results tell us about snow cover in Canada's changing climate.

  • Authors: Philip, S.Y. et al. (F. Anslow is sixth author) Publication Date: Jul 2021

    Main findings: Based on observations and modeling, the occurrence of a heatwave with maximum daily temperatures (TXx) as observed in the area 45–52 ºN, 119–123 ºW, was virtually impossible without human-caused climate change. The observed temperatures were so extreme that they lie far outside the range of historically observed temperatures. This makes it hard to quantify with confidence how rare the event was. In the most realistic statistical analysis the event is estimated to be about a 1 in 1000 year event in today’s climate.There are two possible sources of this extreme jump in peak temperatures. The first is that this is a very low probability event, even in the current climate which already includes about 1.2°C of global warming -- the statistical equivalent of really bad luck, albeit aggravated by climate change. The second option is that nonlinear interactions in the climate have substantially increased the probability of such extreme heat, much beyond the gradual increase in heat extremes that has been observed up to now. We need to investigate the second possibility further, although we note the climate models do not show it. All numbers below assume that the heatwave was a very low probability event that was not caused by new nonlinearities. With this assumption and combining the results from the analysis of climate models and weather observations, an event, defined as daily maximum temperatures (TXx) in the heatwave region, as rare as 1 in a 1000 years would have been at least 150 times rarer without human-induced climate change. Also, this heatwave was about 2°C hotter than it would have been if it had occurred at the beginning of the industrial revolution (when global mean temperatures were 1.2°C cooler than today). Looking into the future, in a world with 2°C of global warming (0.8°C warmer than today which at current emission levels would be reached as early as the 2040s ), this event would have been another degree hotter. An event like this -- currently estimated to occur only once every 1000 years, would occur roughly every 5 to 10 years in that future world with 2°C of global warming.

  • Authors: The Pacific Climate Impacts Consortium Publication Date: Jun 2021

    The state of the future climate depends on human actions, primarily the emission of greenhouse gases and other industrial pollutants. This raises the questions: "What path are recent historical emissions following?" "What path would we be on, if we continue with business-as-usual, in the absence of further mitigation action?" And, "Are these paths reliable guides to future emissions?" One scenario that is commonly used in the scientific literature, RCP 8.5, is often referred to as "business-as-usual." Recently, some scientists have taken issue with this description, saying it is unrealistic and may hinder the goal of emissions reductions policy. Others argue that, in fact, RCP 8.5 is the scenario that most closely tracks cumulative emissions to date, that it is thus of the most use for planning out to the middle of the century. In this Science Brief, we unpack each of these arguments and evaluate what these differing perspectives can tell us about the ultimate objective of emissions scenarios as tools for exploring future climate change.

  • Authors: Yanping He, Francis Zwiers and Nguyen Quoc Publication Date: Mar 2021

    Relationships among surface wind speed, North Pacific climate variability, Pacific climate variability, and tree/weather related power outages are investigated in forest rich British Columbia using almost 12 years of BC Hydro (BCH) wind and power outage data, two decades of BC weather station observations and two climate variability indices. Strong surface wind is found to be the dominate cause of power outages that are reported as being tree or weather related. The observed regional fraction of power outage days and the number of influenced customers per outage day increases quickly when the daily maximum wind speed (DMWS) exceeds 50 km/hr. These extreme winds are mostly observed during winter, with substantial interannual variability in BC coastal regions in the frequency of strong days when DMWS exceeds 50 km/hr. A simple empirical outage model is developed using monthly DMWS frequency in southern coastal BC as a predictor. Cross-validation, which is used to estimate the model's out-of-sample performance, suggests a useful level of skill in hindcasting subseasonal to interannual variations in the frequency of observed regional tree/weather outage occurrence during the 2005 to 2017 period when power outage data are available. The widespread power outage event of December 2006 can also be captured when winter windstorm information is added as an additional model input.

  • Authors: The Pacific Climate Impacts Consortium Publication Date: Feb 2021

    This Science Brief covers a paper in the Proceedings of the National Academy of Sciences, by Xu et al. (2020), who use global climate model (GCM) output, weather station data, estimates of historical global population density, and data on global gross domestic product (GDP), crop and livestock production, to determine if there has been a human climate niche. They determine that such a niche has existed. For the past 6000 years, human populations have lived largely in a fairly narrow range of climates and populations clustered around two temperature ranges, with most people living in a range of about 11°C to about 15°C for mean annual temperature and a smaller, but significant portion living in a range around 20°C to about 25°C.
    They then examine how this niche may change in the future. They find that, under a high emissions scenario, this niche is projected to shift spatially more in the upcoming 50 years than it has in the past 6000, leaving a third of the projected future human population in regions where the mean annual temperature is greater than 29°C.

  • Authors: Environment and Climate Change Canada’s Climate Research Division, PCIC and the National Research Council Publication Date: Jan 2021

    This report provides an assessment of how climatic design data relevant to the National Building Code of Canada and the Canadian Highway Bridge Design Code might change as the climate continues to warm.

  • Authors: The Pacific Climate Impacts Consortium Publication Date: Aug 2020

    This report places the conditions in British Columbia (BC) over 2019 into climatological context. It finds that: a moderate El Niño likely contributed to a slightly warmer than normal 2019 in BC; anomalous warmth peaked in spring, forcing rapid melt of a near-normal winter snowpack; precipitation in summer and fall was above-to-much-above normal across the province; trends in temperature are positive for the period 1950 – 2019 with minimum temperatures (Tmin) increasing faster than maximum temperatures (Tmax), and that precipitation shows no significant trend over the same period.

  • Source Publication: BC Agriculture & Food Climate Action Initiative, 64 pp. Authors: BC Agriculture & Food Climate Action Initiative Publication Date: Jul 2020
  • Authors: The Pacific Climate Impacts Consortium Publication Date: May 2020

    As the Arctic warms, the rate at which microbes in Arctic soil digest soil organic matter increases and, with it, the release of carbon dioxide into the atmosphere also increases. The amount of carbon released into the atmosphere from permafrost in this region is significant and so it is important to measure it accurately and be able to make credible projections of it.

    Publishing in Nature Climate Change, Natali et al. (2019) use observations of CO2 flux from Arctic and Boreal permafrost soil to create a model that allows them to estimate winter (October through the end of April) soil carbon flux over the 2003-2017 period. They also drive their model with global climate model output, to make projections of future CO2 flux in the region. They estimate that approximately 1.7 gigatonnes of carbon (GtC) were released each winter over the 2003-2017 period. The authors also find that, of the variables that they tested, soil temperature had the largest relative influence on CO2 flux. Their projections show future winter Arctic soil fluxes of about 2.0 GtC per year by 2100, for a moderate emissions scenario, and about 2.3 GtC per year, assuming a high-emissions scenario.

  • Authors: Regional District of North Okanagan, Regional District of Central Okanagan, Regional District of Okanagan-Similkameen, Pinna Sustainability, Natural Resources Canada, Okanagan Basin Water Board Publication Date: Apr 2020

    This report is intended to support a local understanding of how climate across the Okanagan is projected to change, and inform regional planning on how to prepare for future climate events. This report offers climate projections for both the 2050s and the 2080s. The 2050s projections are useful for medium-term planning purposes, while the 2080s provide guidance for long-term planning and decision-making.

  • Authors: The Pacific Climate Impacts Consortium Publication Date: Nov 2019

    Understanding how human influences are affecting different parts of the climate system allows us to improve future climate projections. Due to the relative sparsity of precipitation data and the large amount of internal variability that it exhibits, detecting and attributing the human influence on precipitation is difficult. This Science Brief covers recent research that uses information about the physical processes responsible for precipitation in order to detect the anthropogenic influence on winter precipitation over North America and Eurasia over the 1920-2015 period.

    Publishing in Geophysical Research Letters, Guo et al. (2019) use a technique known as "dynamical adjustment," to estimate the atmospheric circulation and thermodynamic contributions to observed precipitation over Eastern North America and Northern Eurasia over the 1920-2015 period. They find that the thermodynamic component, due to anthropogenic emissions, contributes to increases in precipitation in both regions. They then compare the spatial pattern and magnitude of these components to those obtained from global climate models driven with anthropogenic forcings. They find strong agreement between the thermodynamic components of precipitation obtained from the observational data and those obtained from climate model output.

  • Authors: The BC Agriculture & Food Climate Action Initiative Publication Date: Aug 2019

    Bulkley-Nechako & Fraser-Fort George Adaptation Strategies plan is the eighth regional plan developed as part of the Regional Adaptation Program delivered by the BC Agriculture & Food Climate Action Initiative. The report contains a distinctive set of local sector impacts and priorities, as well as a series of strategies and actions for adapting and strengthening resilience. The plans are intended to offer clear actions suited to the specifics of the local context, both with respect to anticipated changes and local capacity and assets.

  • Authors: The Fraser Basin Council Publication Date: Aug 2019

    Climate change is challenging industry and communities across the Northeast region of the province. Wildfires, hail storms, and floods have already challenged local infrastructure and posed health risks to communities. Projected climate change for the region includes increases in frequency and intensity of extremes. Ensuring the region is as prepared as possible for future climate events is critical to maintaining a thriving community, robust natural environment, and vibrant economy. As prepared as possible means the region understands how the climate is changing, and is working together to increase resiliency, and to improve natural and physical infrastructure. Early efforts will reduce the reliance on emergency management and support the ability to thrive over time. Local governments in the region are taking a proactive approach to understanding how climate change will pose risks to Northeast communities and are planning together to build resiliency across the region.

    This document is intended to offer science-based information on how the Northeast’s climate is changing and expected to change over the 21st century. Designing to current and future climate parameters is anticipated to be markedly more cost effective than reacting to climate shocks and stresses over time. In the report, climate projections for the 2020s are offered to represent current climate conditions; projections for the 2050s illustrate the trajectory of change regardless of global emissions reductions; and projections for the 2080s illustrate our likely “business as usual” future climate scenario by late century. The 2020s projections are useful as they more accurately depict the current state of climate than historical observed baseline data. The 2050s projections are useful for medium-term planning and infrastructure purposes, while the 2080s provide guidance for long-term infrastructure decisions.

  • Authors: The BC Agriculture & Food Climate Action Initiative Publication Date: Jul 2019

    The Kootenay & Boundary Regional Adaptation Strategies plan is the seventh regional plan developed as part of the Regional Adaptation Program delivered by the BC Agriculture & Food Climate Action Initiative. The report contains a distinctive set of local sector impacts and priorities, as well as a series of strategies and actions for adapting and strengthening resilience. The plans are intended to offer clear actions suited to the specifics of the local context, both with respect to anticipated changes and local capacity and assets.

  • Source Publication: Kootenay & Boundary Adaptation Strategies, The BC Agriculture & Food Climate Action Initiative, 64 pp. Authors: The BC Agriculture & Food Climate Action Initiative Publication Date: Jun 2019
  • Authors: The Pacific Climate Impacts Consortium Publication Date: Jun 2019

    As Canada's climate continues to change, trends in mean temperature and precipitation are evident, but so to are trends in indices based on temperature and precipitation observations. These are of interest to a wide range of sectors and this Science Brief covers a recent paper on changes to these indices in Canada.

  • Authors: British Columbia Ministry of Environment and Climate Change Strategy Publication Date: Apr 2019

    A forward-thinking group at Nanaimo Hospital developed a comprehensive climate risk assessment matrix which is becoming an integral part of their organizational decision-making. Future hospital retrofits will potentially include increased cooling capacity, enhanced air filtration, and other measures to reduce costs, greenhouse gas emissions, and protect the facility and its patients from the potential effects of climate change.

  • Authors: The Pacific Climate Impacts Consortium Publication Date: Feb 2019

    Real-time precipitation data can be of use to areas ranging from forecasting to forest fire management. This Science Brief covers a recent paper that examines the past ten years of a near real-time Canadian precipitation product.

    Writing in Atmosphere-Ocean, Fortin et al. (2018) examine the Canadian Precipitation Analysis (CaPA), a near real-time precipitation product covering all of North America that is produced by Environment and Climate Change Canada. They review papers that evaluate CaPA compared to precipitation observations as well as the applications of CaPA for various types of research, ranging from hydrology1 and hydrometeorology2 to biogeophysics3. They find that CaPA compares favourably against other precipitation data, and report that it has been used successfully in studies across a number of fields, including hydrometeorology, hydrology, land surface and atmospheric modelling.

  • Authors: The Pacific Climate Impacts Consortium Publication Date: Aug 2018

    The 2015 Paris Climate Accord aims to limit global warming to at most 2°C and ideally 1.5°C relative to the preindustrial climate, to limit the impacts of anthropogenic climate change. In this Science Brief, we discuss greenhouse gas emissions budgets and pathways consistent with these warming limits.

    Three recent papers in Nature Climate Change examine different aspects of these budgets and pathways:

    Tokarska and Gillett (2018) use global climate model projections to calculate a new carbon budget for future emissions, relative to the 2006-2015 period, that is consistent with keeping warming to 1.5°C. They find a median remaining carbon budget of 208 billion tonnes from January 2016.

    Tanaka and O'Neill (2018) use an integrated assessment model to test whether the Paris temperature limits of 2°C and 1.5°C require zero greenhouse gas emissions, whether a zero net greenhouse emissions limit implies that the temperature limits will be met and what the effect of imposing both emissions and temperature limits are. Their results suggest that meeting the  temperature limits doesn't require reducing net greenhouse gas emissions to zero, that reducing emissions to zero doesn't necessarily result in keeping temperatures under the Paris temperature limits by the end of the century, and that the effect of imposing both temperature and emissions limits is that temperatures decline after meeting the initial temperature limit.

    Van Vuuren et al. also use an integrated assessment model, to develop alternative emissions scenarios that examine how the need for negative emissions may be reduced through implementing other strategies, such as making large-scale lifestyle changes, shifting to renewable energy and switching to more efficient technologies for the production of energy and materials. They find that these strategies can reduce to a small degree, but not eliminate, the need for negative emissions. They also find that these measures have co-benefits such as helping to meet other United Nations sustainability goals.