Informing BC Stakeholders

You are here

Publications Library

  • Authors: The Pacific Climate Impacts Consortium Publication Date: Mar 2018

    Two recent articles in the journal Climatic Change examine some of the effects that climate change may have on agriculture in the Pacific Northwest.

    Focusing on specialty fruit production, Houston et al. (2018) find that overall warmer conditions and reduced water availability may reduce net returns on crops due to increasing farming costs, affecting yields and altering product quality. They suggest that management strategies currently employed in marginal production areas that moderate temperatures and offset mismatches between the needs of the plant at various growth stages and seasonal weather conditions may be useful adaptation strategies.

    Neibergs and colleagues (2018) review the impacts of climate change on beef cattle production. They find that changes to seasonal temperature and precipitation may affect the availability of the plants on which cattle forage. This in turn could affect the number of cattle that an area can support, and the dates at which cattle are "turned-out" to pasture and taken in from pasture.

  • Authors: The Pacific Climate Impacts Consortium Publication Date: Feb 2018

    Three recent journal articles examine the rate of sea level rise and the ability of models to accurately simulate sea level rise at a global and regional scale.

    Publishing in Geophysical Research Letters, Yi et al. (2017) examine the rate at which sea level rise is accelerating and find that the rate of acceleration over the 2005-2015 period is three times faster than it was over the 1993-2014 period and an order of magnitude larger than the acceleration over the 1920-2011 period. They also identify three primary contributors to this acceleration: the thermal expansion of sea water, reduced storage of water on land and the melting of ice on land.

    In a pair of articles published in the Journal of Climate, Slangen et al. (2017) and Meyssignac et al. (2017) analyze the of climate models to simulate both global and regional sea level rise. They find that simulations can only explain about half (50% ± 30%) of the observed sea level rise. After bias corrections are included for the Greenland ice sheet and the possibility that ice sheets and the deep ocean were not in equilibrium with the 20th Century climate, the models explain about three-quarters (75% ± 38%) of the observed 20th Century sea level rise and all (105% ± 35%) of the observed sea level rise over the period from 1993-1997 to 2011-2015 period. Regionally, climate models underestimate the amount of sea level rise that occured, but do show reasonable agreement for interannual and multidecadal variability. When the same bias corrections are applied, the models come into closer agreement with observations. In addition, they find that the spatial variability in regional sea level rise is largely due to the thermal expansion of sea water and ongoing isostatic adjustment resulting from the end of the last glacial period.

  • Authors: The Pacific Climate Impacts Consortium Publication Date: Oct 2017

    Two articles recently published in the peer reviewed literature examine how the rate of snowmelt may change as the Earth's climate changes, and how droughts can evolve and move over time.

    Publishing in Nature Climate Change, Musselman et al. (2017) examine the effect that global warming may have on snowmelt. They find that the portion of snow melt occurring at moderate and high melt rates in Western North America is projected to decrease, while the portion occurring at low melt rates is projected to increase. Total meltwater volume is projected to decrease.

    In recent research published in Geophysical Research Letters, Herrera-Estrada et al. (2017) explore how droughts evolve in space and time across six continents. They find that clusters of droughts can travel hundreds to thousands of kilometers across each continent. In addition, the authors find that longer-lasting droughts tend to travel farther, as well as be more severe.

  • Authors: The Cowichan Valley Regional District and the Pacific Climate Impacts Consortium Publication Date: Sep 2017

    Temperatures in the Cowichan Valley are warming. Global climate models project an increase in annual average temperature of almost 3°C in our region by the 2050s. While that may seem like a small change, it is comparable to the difference between the warmest and coldest years of the past. The purpose of this report is to quantify, with the most robust projections possible, the related climate impacts (including changes to climate extremes) associated with warming. This climate information will then inform regional risk assessment, decision making, and planning in the Cowichan Valley region, with a goal of improving resilience to
    climate change. For this reason, this report focusses on the business-as-usual emissions scenario and the 2050s timeframe. By the end of the 21st century, projected warming and associated impacts are even larger. In addition, the amount of warming by that time depends more highly on the quantity of greenhouse gases emitted in the meantime.

  • Authors: The Pacific Climate Impacts Consortium Publication Date: Jul 2017

    To plan for and adapt to the potential impacts of climate change, there is a need among communities in British Columbia for projections of future climate and climate extremes at a suitable, locally-relevant scale. This report summarizes work completed in 2012 by the Pacific Climate Impacts Consortium (PCIC) to this end. Commissioned by a group of municipalities and regional districts in the Georgia Basin (Figure 1), PCIC developed and analyzed a set of projections of future climate and climate extremes for the area. The full report, Georgia Basin, Projected Climate Change, Extremes and Historical Analysis, is available from PCIC’s online publications library.

  • Authors: The Capital Regional District, the Pacific Climate Impacts Consortium, Pinna Sustainability Publication Date: Jun 2017

    Temperatures in the Capital Regional District (CRD) are warming. Global climate models project an average annual warming of about 3°C in our region by the 2050s. While that may seem like a small change, it is comparable to the difference between the warmest and coldest years of the past. The purpose of this report is to quantify, with the most robust projections possible, the related climate impacts (including changes to climate extremes) associated with warming. This climate information will then inform regional vulnerability and risk assessments, decision-making, and planning in the capital region, with a goal of improving resilience to climate change.

  • Authors: The Pacific Climate Impacts Consortium Publication Date: May 2017

    Two recently published articles explore how projected changes to climate and carbon dioxide in the atmosphere may affect grasslands in temperate regions and three crops in the United States. Addressing the first question in Nature Climate Change, Obermeier et al. (2017) find that the carbon dioxide fertilization effect in C3 grasslands is reduced when conditions are wetter, dryer or hotter than the conditions to which the grasses are adapted.

    Publishing in Nature Communications, Schauberger et al. (2017) examine the second question. They find that yields for wheat, soy and corn decline at projected temperatures greater than 30°C, with reductions in yield of 22% for wheat, 40% for soy and 49% for corn. While carbon fertilization does reduce the loss in yields, the effect is much smaller than that of irrigation, suggesting that water stress at higher temperatures may be largely responsible for losses.

  • Authors: The Pacific Climate Impacts Consortium Publication Date: Jan 2017

    This Science Brief covers recent research by Mao et al. (2016) published in Nature Climate Change. The authors find that the observed greening of the land surface between 30-75° north over the 1982-2011 period is largely due to anthropogenic greenhouse gas emissions.

  • Authors: Metro Vancouver, the Pacific Climate Impacts Consortium, Pinna Sustainability Publication Date: Sep 2016

    Temperatures in Metro Vancouver are warming. Global climate models project an average increase of about 3°C in our region by the 2050s. Metro Vancouver’s ability to adapt to climate change requires specific information on how changes in temperature and precipitation will play out locally, how expected changes may vary throughout the seasons, and about new climate extremes. Work has been completed by the Pacific Climate Impacts Consortium (PCIC) to understand the details of how our climate may change by the 2050s and 2080s.

  • Authors: The Pacific Climate Impacts Consortium Publication Date: Sep 2016

    Two articles recently published in the peer reviewed literature examine two types of extreme weather events that affect coastal British Columbia, storm surge events and atmospheric river events.

    The first paper, by Soontiens et al. (2016) in Atmosphere-Ocean examines the ability of a numerical ocean model to simulate storm surges in the Strait of Georgia and the relative contribution of several factors to storm surge amplitude in the region. The authors use the model to simulate six storm surge events from the 2006-2012 period at four locations and find that the model does well at reproducing the magnitude of storm surges. They also find that the primary contribution to storm surges in the region are sea surface height anomalies from the Pacific, with local wind patterns causing small spatial differences in the sea surface height.

    The second paper, by Hagos et al. (2016) in Geophysical Research Letters uses output from a global climate model to examine changes to atmospheric river events over western North America, assuming large, business-as-usual anthropogenic greenhouse gas emissions. The authors’ projections show an increase of about 35% in days on which atmospheric rivers make landfall in the last 20 years of the 21st century when compared to the last 20 years of the 20th century. Their projections also show a resulting increase of about 28% in extreme precipitation days.

  • Authors: The Pacific Climate Impacts Consortium Publication Date: Jul 2016

    This PCIC Science Brief covers a recent paper by Sigmond and Fyfe (2016) that was published in Nature Climate Change. The authors investigate the causes of cooler winters over the early 2000s in North America and find that they vary by region. In the northwest, these cooler winters were largely due to a pattern of western cooling and central warming in the tropical Pacific Ocean. In central North America, the cooler winters were primarily due to changes in the northerly winds driven by increased sea level pressure on the west coast of North America.

  • Authors: The Pacific Climate Impacts Consortium Publication Date: Apr 2016

    The City of Vancouver is warming. Global climate models project annual average temperature to increase by 1.7°C to 4.0°C, and indicate an average increase of 2.9°C between the 1971-2000 baseline and the 2050s. This fact sheet provides specific information intended to facilitate adaptation as the climate changes. All values in the summary are for the 2050s relative to the 1971-2000 baseline. Additional variables, seasons, projections for the 2080s, and maps were also produced and provided to the City of Vancouver.

  • Authors: The Pacific Climate Impacts Consortium Publication Date: Apr 2016

    This memo summarizes some of the key information required for adaptation in the Whistler area. Projected changes include: increases to the intensity and frequency of heavy rain events; longer, hotter, drier summers and milder winters with reduced snowpack at lower elevations.

  • Authors: Faron S. Anslow Publication Date: Mar 2016

    In many respects, 2015 was a record year for British Columbia, too, both seasonally and for the year as a whole. To help us place last year’s conditions in BC into a historical and global context, PCIC Climatologist Dr. Faron Anslow offers his perspective on 2015. In brief, the warm winter saw records for daily maximum and minimum temperature broken in the southwest and this warmth continued into the spring, with the warmest minimum temperatures ever recorded in western and central BC and maximum temperature records broken in the north. While the summer and fall reverted to more typical conditions, the year overall remained exceptionally warm for the province.

  • Authors: The Pacific Climate Impacts Consortium Publication Date: Mar 2016

    The new Science Brief covers two recent papers by Beedle et al. (2015) and Clarke et al. (2015) on changes to glaciers in western Canada. Publishing in the journal The Cryosphere, Beedle et al. use photographic methods to quantify changes to 33 glaciers in the Cariboo Mountains. They find that all of the glaciers receded over the 1952-2005 period with an average loss in surface area of about 0.19% per year. Clarke et al.’s work is published in Nature Geoscience and uses a regional glaciation model driven by global climate model output to examine possible future changes to glaciers in western Canada. Their projections show a reduction of between 70% to 95% in both glacier area and volume by the year 2100 compared to 2005.

  • Authors: The Pacific Climate Impacts Consortium Publication Date: Dec 2015

    Publishing in the Reviews of Geophysics, Westra et al (2014) summarize the current state of research in the analysis of future changes to the intensity, frequency and duration of extreme rainfall. Their literature review highlights the complicated relationship between short duration extreme rainfall and atmospheric temperature. In some locations, such extreme precipitation does not simply scale with the ability of the atmosphere to hold moisture (i.e. at the Clausius-Clapyron rate of 6 to 7% per °C). Instead, at these locations the general pattern is that such a relationship is found to hold up to about 12 °C, but between 12 and 24 °C extreme precipitation appears to increase more strongly with warming. This is partly due to an increase in convective rainfall. However, above about 24 °C, the pattern at these locations is one in which the response of precipitation to increasing temperature appears to be weaker, eventually reversing. This may be due to decreased moisture availability at these temperatures, though Westra et al. note that “the mechanism that causes these moisture deficits remains to be investigated.” The authors also find that anticipated changes in sub-daily precipitation associated with a warming climate will “significantly affect the magnitude and frequency of urban and rural flash floods.”

    Compared to daily rainfall, Westra et al. find that sub-daily and sub-hourly rainfall are more sensitive to local surface temperatures. They also report that while sub-daily precipitation observations are too scarce to determine regional trends, geographic location will likely affect rates of change in daily precipitation extremes. In terms of making projections of future changes in these events, the authors find that, owing to the resolution of current global climate models, they are limited in their ability to simulate such precipitation events. In particular, the models are generally not run at sufficient resolution to accurately resolve the necessary convective processes, though some very high-resolution “convection permitting” regional climate models operate at a sufficient resolution to potentially be useful in projecting such extremes. One implication of these findings is that we cannot currently make credible projections of sub-daily rainfall events.

  • Authors: The Pacific Climate Impacts Consortium Publication Date: Jul 2015

    In a recent paper published in Science, Karl et al. (2015) revise the National Oceanic and Atmospheric Administration’s (NOAA) surface temperature data set and examine temperature trends in the updated data. The authors use a sea surface temperature data set that has been corrected for biases in sea surface data that arise due to the difference in measurements from ships and buoys, and the authors incorporate a much larger amount of data from land-based observations.
    They find that the global warming trend in the updated data set over the 1998-2012 period is just over double of that in the old data set, about 0.086 °C per decade, compared to 0.039 °C per decade. This is largely due to the corrections in sea surface temperature measurements. The updated data shows a statistically significant global warming trend over the 1998-2012 period and the authors note that their results “do not support the notion of a ‘slowdown’ in the increase of global surface temperature.”

  • Authors: The Pacific Climate Impacts Consortium Publication Date: Apr 2015

    Two articles recently published in the peer-review literature seek to answer two related questions: What role could utilizing vegetation burning for energy, with methods to capture the carbon dioxide emitted, have in aggressive short-term climate mitigation in western North America? And, how might North American vegetation and its interactions with the climate change in the future?

    Addressing the first question in Nature Climate Change, Sanchez et al. (2015) find that western North America could attain a carbon-negative power system by 2050 through strong deployment of renewable energy sources, including BioEnergy with Carbon Capture and Storage (BECCS), and fossil fuel reductions. Their results indicate that reductions of up to 145% from 1990s emissions are possible. They also find that the primary value of BECCS is not electricity production, but carbon sequestration, and note that BECCS can also be used to reduce emissions in the transportation and industrial sectors.

    Publishing in the Journal of Geophysical Research: Atmospheres, Garnaud and Sushama (2015) examine the second question. In order to do this they downscale output from a global climate model using a regional climate model that can simulate vegetation dynamics. They find that the projected future increases to growing season length result in greater vegetation productivity and biomass, though this plateaus at the end of of the 21st century. Their projections also indicate an increase in the water-use efficiency of plants, but decreased plant productivity in the southeastern US over the 2071-2100 period. In addition, they find that accounting for vegetation feedbacks leads to increased warming in summer at higher latitudes and a reduction in summer warming at lower latitudes.

  • Authors: The Pacific Climate Impacts Consortium Publication Date: Feb 2015

    Two recently published articles serve to answer two questions about the response of the Earth’s climate to carbon emissions. The first paper, by Goodwin et al. (2014) in Nature Geoscience, investigates the question of why transient surface warming on the timescale of decades to centuries, due to cumulative carbon emissions, is nearly-linear. They find that this is the result of the competing effects of the ocean absorbing both heat and carbon. While the former initially reduces climate sensitivity by drawing down heat, it then increases climate sensitivity as this heat absorption reduces. This is offset by the latter, as the ocean removes carbon dioxide from the air. The authors also find, in line with previous research, that increasing emissions lead to increased surface warming and that this warming will last many centuries.

    The second article, by Ricke and Caldeira (2014) in Environmental Research Letters, uses model output to analyze the response of the Earth’s climate to pulses of carbon dioxide in order to answer the question of how long it takes for maximum warming to occur due to a given emission. They find that the median time between such an emission and the maximum warming due to that emission is 10.1 years. Their results lead the authors to state that, “[o]ur results indicate that benefit from avoided CO2 emissions will be manifested within the lifetimes of people who acted to avoid [those emissions].”

  • Authors: The Pacific Climate Impacts Consortium Publication Date: Dec 2014

    Recent research by P.A. O’Gorman (2014), in the journal Nature, uses an ensemble of global climate model (GCM) simulations to examine the projected changes in both mean snowfall and daily snowfall extremes in a high greenhouse-gas emissions scenario. He finds that, while both mean snowfall and extreme snowfall decrease as the climate warms due to the influence of greenhouse gasses, the reduction in daily snowfall extremes is smaller than the reduction in mean snowfall. O’Gorman suggests, based on a simple physical model, that this may be due to snowfall extremes occuring near an optimal temperature that is insensitive to climate change.

Pages