Informing BC Stakeholders

You are here

Publications Library

  • Authors: T. Q. Murdock, S. R. Sobie, H. D. Eckstrand, E. Jackson Publication Date: Apr 2016

    Climate change projections have been provided in this report for Metro Vancouver and the Capital Regional District from several difference sources: Global Climate Models (GCMs) directly, high resolution elevation-corrected projections from GCMs, and Regional Climate Models. Historical climate information at selected stations of interest throughout the region is also provided for comparison.
    Projected annual warming by the 2050s (compared to 1961-1990) for the two regions is similar, according to a set of 30 commonly used Global Climate Models (GCMs). Projections are given for both the 2050s and 2080s periods. For the 2050s, the range of projected change in Metro Vancouver is +1.4°C to +2.8°C in summer, +0.8°C to +2.7°C in winter, -5% to +16% in winter precipitation, and -25% to +5% in summer precipitation. For the 2050s, the range of projected change in the Capital Regional District (CRD) is +1.3°C to +2.6°C in summer, +0.8°C to +2.4°C in winter, -5% to +17% in winter precipitation, and -30% to +1% in summer precipitation. Compared to the ranges, the projected differences between regions are minor.
    Maps of high resolution projections of change are provided for several variables of interest. Projections mid-century show changes in variables related to temperature: increased growing degree days, cooling degree days, and frost free period along with decreased heating degree days and precipitation as snow. The projected 2080s maps illustrate a future climate that does not resemble the present-day for most of these variables.
    Regional Climate Models projections are used to provide projections of changes in temperature, precipitation, and indices of extremes. Extreme temperatures so warm that in the past they would be exceeded on average once every ten years (corresponding to about 32°C to 35°C) are projected to occur on average over twice as often in future in Metro Vancouver and almost four times as often in future in the CRD.
    The amount of precipitation falling during very wet days is projected to increase by 21% in Metro Vancouver and 20% in CRD, while precipitation during extremely wet days is projected to increase by 28% in Metro Vancouver and 25% in CRD. More extreme precipitation events (with 3-hour duration) so intense than in the past they would be exceeded on average only once every 10 years are projected to occur on average three times as often in future in Metro Vancouver and about three and a half times as often in future in CRD.
    The implications of these projected changes are briefly discussed for physical, social, economic, and ecological systems, and the ICLEI Canada climate adaptation planning methodology is described. This process, outlined in Changing Climate, Changing Communities: Guide and Workbook for Municipal Climate Adaptation is currently being undertaken by communities in Metro Vancouver and CRD. The information contained within this report supports Milestone Two of that process as is intended to assist with adaptation planning.

  • Source Publication: Environmental Research Letters, 11, 4, doi:10.1088/1748-9326/11/4/044011 Authors: B. Mueller, X. Zhang and F.W. Zwiers Publication Date: Apr 2016

    e project that within the next two decades, half of the world's population will regularly (every second summer on average) experience regional summer mean temperatures that exceed those of the historically hottest summer, even under the moderate RCP4.5 emissions pathway. This frequency threshold for hot temperatures over land, which have adverse effects on human health, society and economy, might be broached in little more than a decade under the RCP8.5 emissions pathway. These hot summer frequency projections are based on adjusted RCP4.5 and 8.5 temperature projections, where the adjustments are performed with scaling factors determined by regularized optimal fingerprinting analyzes that compare historical model simulations with observations over the period 1950–2012. A temperature reconstruction technique is then used to simulate a multitude of possible past and future temperature evolutions, from which the probability of a hot summer is determined for each region, with a hot summer being defined as the historically warmest summer on record in that region. Probabilities with and without external forcing show that hot summers are now about ten times more likely (fraction of attributable risk 0.9) in many regions of the world than they would have been in the absence of past greenhouse gas increases. The adjusted future projections suggest that the Mediterranean, Sahara, large parts of Asia and the Western US and Canada will be among the first regions for which hot summers will become the norm (i.e. occur on average every other year), and that this will occur within the next 1–2 decades.

  • Source Publication: Nature Climate Change 6, 706–709, doi:10.1038/NCLIMATE2956. Authors: Sun, Y., X, Zhang, G. Ren, F.W. Zwiers and T. Hu Publication Date: Mar 2016

    China has warmed rapidly over the past half century and has experienced widespread concomitant impacts on water availability, agriculture and ecosystems. Although urban areas occupy less than 1% of China’s land mass, the majority of China’s observing stations are situated in proximity to urban areas, and thus some of the recorded warming is undoubtedly the consequence of rapid urban development, particularly since the late 1970s. Here, we quantify the separate contributions of urbanization and other external forcings to the observed warming. We estimate that China’s temperature increased by 1.44 °C (90% confidence interval 1.22–1.66 °C) over the period 1961–2013 and that urban warming influences account for about a third of this observed warming, 0.49 °C (0.12–0.86 °C). Anthropogenic and natural external forcings combined explain most of the rest of the observed warming, contributing 0.93 °C (0.61–1.24 °C). This is close to the warming of 1.09 °C (0.86–1.31 °C) observed in global mean land temperatures over the period 1951–2010, which, in contrast to China’s recorded temperature change, is only weakly affected by urban warming influences. Clearly the effects of urbanization have considerably exacerbated the warming experienced by the large majority of the Chinese population in comparison with the warming that they would have experienced as a result of external forcing alone.

  • Authors: Anslow, F.S. and Y. Wang Publication Date: Mar 2016

    This document details the exploratory efforts to create a high quality, homogenized set of monthly mean of daily minimum and maximum temperatures for the Williston Basin and Campbell River regions of British Columbia. Data from BC Hydro, the Ministry of Transportation and Infrastructure, and the Ministry of Forests Lands and Natural Resource Operation Wildfire Management Branch are used. The data records are of various lengths, from as many as 50 years to as few as a single year. A set of quality control procedures is applied to the data and then the data are subject to a two step statistical homogenization process. The quality control work revealed that the data are of high quality overall. Inconsistencies were set as missing. Homogenization efforts revealed that fewer than 50% of stations contained any discontinuities with the data in the Williston region being of greater homogeneity than that in the Campbell River region. The outlook for homogenizing daily temperature and monthly precipitation totals is also discussed. Appendices detail station metadata as well as changepoint occurrence for each station. This report will be accompanied by an archive of the results of this project including the homogenized datasets.

  • Source Publication: Wiley Interdisciplinary Reviews: Climate Change, 7, 1, pages 23–41, doi:10.1002/wcc.380. Authors: Stott, P.A., N. Christidis, F. Otto, Y. Sun, J.-P. Vanderlinden, G.J. van Oldenborgh, R. Vautard, P. Walton, P. Yiou, F.W. Zwiers Publication Date: Jan 2016

    Extreme weather and climate-related events occur in a particular place, by definition, infrequently. It is therefore challenging to detect systematic changes in their occurrence given the relative shortness of observational records. However, there is a clear interest from outside the climate science community in the extent to which recent damaging extreme events can be linked to human-induced climate change or natural climate variability. Event attribution studies seek to determine to what extent anthropogenic climate change has altered the probability or magnitude of particular events. They have shown clear evidence for human influence having increased the probability of many extremely warm seasonal temperatures and reduced the probability of extremely cold seasonal temperatures in many parts of the world. The evidence for human influence on the probability of extreme precipitation events, droughts, and storms is more mixed. Although the science of event attribution has developed rapidly in recent years, geographical coverage of events remains patchy and based on the interests and capabilities of individual research groups. The development of operational event attribution would allow a more timely and methodical production of attribution assessments than currently obtained on an ad hoc basis. For event attribution assessments to be most useful, remaining scientific uncertainties need to be robustly assessed and the results clearly communicated. This requires the continuing development of methodologies to assess the reliability of event attribution results and further work to understand the potential utility of event attribution for stakeholder groups and decision makers.

  • Source Publication: Climate Dynamics, doi:10.1007/s00382-015-2807-7 Authors: Whan, K., and F.W. Zwiers Publication Date: Jan 2016

    We assess the ability of two Canadian regional climate models (RCMs), CanRCM4 and CRCM5, to simulate North American climate extremes over the period 1989–2009. Both RCMs use lateral boundary conditions derived from the ERA-Interim reanalysis and share the same dynamical core but use different nesting strategies, land-surface and physics schemes. The annual cycle and spatial patterns of extreme temperature indices are generally well reproduced in both models but the magnitude varies. In central and southern North America, maximum temperature extremes are up to 7 °C warmer in CanRCM4. There is a cool bias in minimum temperature extremes in both RCMs. The shape of the annual cycle of extreme rainfall varies between simulations. There is a wet bias in CRCM5 extreme rainfall on the west coast throughout the year and in winter rainfall elsewhere. In summer both RCMs have precipitation biases in the south-east. These rainfall and temperature biases are likely associated with differences in the physical parameterisation of rainfall. CanRCM4 simulates too little convective rainfall, while over-estimating large-scale rainfall; nevertheless, cloud cover is well simulated. CRCM5 simulates more large-scale rainfall throughout the year on the west coast and in winter in other regions. The spatial extent, intensity and location of atmospheric river (AR) landfall are well reproduced by the RCMs, as is the fraction of winter rainfall from AR days. Spectral nudging improves agreement on landfall latitude between the RCM and the driving model without greatly diminishing the intensity of the rainfall extreme.

  • Source Publication: Geophysical Research Letters, 42, 24, 10,867–10,875, doi:10.1002/2015GL066858. Authors: Kumar, S., R.P. Allan, F.W. Zwiers, D.M. Lawrence and P.A. Dirmeyer Publication Date: Dec 2015

    A theoretically expected consequence of the intensification of the hydrological cycle under global warming is that on average, wet regions get wetter and dry regions get drier (WWDD). Recent studies, however, have found significant discrepancies between the expected pattern of change and observed changes over land. We assess the WWDD theory in four climate models. We find that the reported discrepancy can be traced to two main issues: (1) unforced internal climate variability strongly affects local wetness and dryness trends and can obscure underlying agreement with WWDD, and (2) dry land regions are not constrained to become drier by enhanced moisture divergence since evaporation cannot exceed precipitation over multiannual time scales. Over land, where the available water does not limit evaporation, a “wet gets wetter” signal predominates. On seasonal time scales, where evaporation can exceed precipitation, trends in wet season becoming wetter and dry season becoming drier are also found.

  • Source Publication: Hydrological Processes, 28, 4294–4310, doi: 10.1002/hyp.9997 Authors: Shrestha, R.R., D.L. Peters and M.A. Schnorbus Publication Date: Nov 2015

    It is a common practice to employ hydrologic models for assessing alterations to streamflow as a result of anthropogenically driven changes, such as riverine, land use, and climate change. However, the ability of the models to replicate different components of the hydrograph simultaneously is not clear. Hence, this study evaluates the ability of a standard hydrologic model set-up: Variable Infiltration Capacity (VIC) hydrologic model for two headwater sub-basins in the Fraser River (Salmon and Willow), British Columbia, Canada, with climate inputs derived from observations and statistically downscaled global climate models (GCMs); to simulate six general water resource indicators (WRIs) and 32 ecologically relevant indicators of hydrologic alterations (IHA). The results show a generally good skill of the observation-driven VIC model in replicating most of the WRIs and IHAs. Although the WRIs, including annual volume, centre of timing, and seasonal flows, and the IHAs, including maximum and minimum flows, were reasonably well replicated, statistically significant differences in some of the monthly flows, number and duration of flow pulses, rise and fall rates, and reversals were noted. In the case of GCM-driven results, additional monthly, maximum, and minimum flow indicators produced statistically significant differences. A number of issues with the model input/output data, hydrologic model parametrization and structure as well as downscaling methods were identified, which lead to such discrepancies. Therefore, there is a need to exercise caution in the use of model-simulated indicators. Overall, the WRIs and IHAs can be useful tools for evaluating changes in an altered hydrologic system, provided the skill and limitations of the model in replicating these indicators are understood.

  • Source Publication: Weather and Climate Extremes, 9, 57-67, doi:10.1016/j.wace.2015.05.001 Authors: Whan, K., J. Zscheischler, R., Orth, M. Shongwe, M., Rahimi, E.O. Asare and S.I. Seneviratne Publication Date: Nov 2015

    Land-atmosphere interactions play an important role for hot temperature extremes in Europe. Dry soils may amplify such extremes through feedbacks with evapotranspiration. While previous observational studies generally focused on the relationship between precipitation deficits and the number of hot days, we investigate here the influence of soil moisture (SM) on summer monthly maximum temperatures (TXx) using water balance model-based SM estimates (driven with observations) and temperature observations. Generalized extreme value distributions are fitted to TXx using SM as a covariate. We identify a negative relationship between SM and TXx, whereby a 100 mm decrease in model-based SM is associated with a 1.6 °C increase in TXx in Southern-Central and Southeastern Europe. Dry SM conditions result in a 2–4 °C increase in the 20-year return value of TXx compared to wet conditions in these two regions. In contrast with SM impacts on the number of hot days (NHD), where low and high surface-moisture conditions lead to different variability, we find a mostly linear dependency of the 20-year return value on surface-moisture conditions. We attribute this difference to the non-linear relationship between TXx and NHD that stems from the threshold-based calculation of NHD. Furthermore the employed SM data and the Standardized Precipitation Index (SPI) are only weakly correlated in the investigated regions, highlighting the importance of evapotranspiration and runoff for resulting SM. Finally, in a case study for the hot 2003 summer we illustrate that if 2003 spring conditions in Southern-Central Europe had been as dry as in the more recent 2011 event, temperature extremes in summer would have been higher by about 1 °C, further enhancing the already extreme conditions which prevailed in that year.

  • Source Publication: Earth’s Future, 2, 3, 152‐160, doi: 10.1002/2013EF000159 Authors: Kumar, S., D. Lawrence, P. Dirmeyer and J. Sheffield Publication Date: Nov 2015

    The temporal variability of river and soil water affects society at time scales ranging from hourly to decadal. The available water (AW), i.e., precipitation minus evapotranspiration, represents the total water available for runoff, soil water storage change, and ground water recharge. The reliability of AW is defined as the annual range of AW between local wet and dry seasons. A smaller annual range represents greater reliability and a larger range denotes less reliability. Here we assess the reliability of AW in the 21st century climate projections by 20 climate models from phase 5 of the Coupled Model Intercomparison Project (CMIP5). The multimodel consensus suggests less reliable AW in the 21st century than in the 20th century with generally decreasing AW in local dry seasons and increasing AW in local wet seasons. In addition to the canonical perspective from climate models that wet regions will get wetter, this study suggests greater dryness during dry seasons even in regions where the mean climate becomes wetter. Lower emission scenarios show significant advantages in terms of minimizing impacts on AW but do not eliminate these impacts altogether.

  • Source Publication: Geology, 43, 23‐26, doi:10.1130/G36179.1 Authors: Ullman, D.J., A.E. Carlson, A.N. LeGrande, A.K. Moore, F.S. Anslow, M. Caffee, K.M. Syverson, and J.M. Licciardi Publication Date: Nov 2015

    Establishing the precise timing for the onset of ice-sheet retreat at the end of the Last Glacial Maximum (LGM) is critical for delineating mechanisms that drive deglaciations. Uncertainties in the timing of ice-margin retreat and global ice-volume change allow a variety of plausible deglaciation triggers. Using boulder 10Be surface exposure ages, we date initial southern Laurentide ice-sheet (LIS) retreat from LGM moraines in Wisconsin (USA) to 23.0 ± 0.6 ka, coincident with retreat elsewhere along the southern LIS and synchronous with the initial rise in boreal summer insolation 24–23 ka. We show with climate-surface mass balance simulations that this small increase in boreal summer insolation alone is potentially sufficient to drive enhanced southern LIS surface ablation. We also date increased southern LIS retreat after ca. 20.5 ka likely driven by an acceleration in rising isolation. This near-instantaneous southern LIS response to boreal summer insolation before any rise in atmospheric CO2 supports the Milanković hypothesis of orbital forcing of deglaciations.

  • Source Publication: Climate Dynamics, 45, 7, 1713-1726 doi:10.1007/s00382‐014‐2423‐y Authors: Wan, H., X. Zhang, F.W. Zwiers and S.K. Min Publication Date: Oct 2015

    Using an optimal fingerprinting method and improved observations, we compare observed and CMIP5 model simulated annual, cold season and warm season (semi-annual) precipitation over northern high-latitude (north of 50°N) land over 1966–2005. We find that the multi-model simulated responses to the effect of anthropogenic forcing or the effect of anthropogenic and natural forcing combined are consistent with observed changes. We also find that the influence of anthropogenic forcing may be separately detected from that of natural forcings, though the effect of natural forcing cannot be robustly detected. This study confirms our early finding that anthropogenic influence in high-latitude precipitation is detectable. However, in contrast with the previous study, the evidence now indicates that the models do not underestimated observed changes. The difference in the latter aspect is most likely due to improvement in the spatial–temporal coverage of the data used in this study, as well as the details of data processing procedures.

  • Source Publication: Climate Symposium 2014 – Findings and Recommendations. Bulletin of the American Meteorological Society, 96, ES145–ES147, doi:10.1175/BAMS-D-15-00003.1 Authors: Asrar, G, S. Bony, O. Boucher, A. Busalacchi, A. Cazenave, M. Dowell, G. Flato, G. Hegerl, E. Källén, T. Nakajima, A. Ratier, R. Saunders, J. Slingo, B. Sohn, J. Schmetz, B. Stevens, P. Zhang and F. Zwiers Publication Date: Sep 2015

    The Climate Symposium 2014, organized by the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) and the World Climate Research Programme (WCRP), was entitled “Climate Research and Earth Observation from Space—Climate Information for Decision Making.” Session topics revolved around the six Grand Science Challenges of the WCRP and addressed the specific need for, and role of, climate observations from space. Based on the presentations and discussions at the symposium, the Science Programme Committee identified main findings and recommendations, which are presented in this summary.

  • Source Publication: Weather and Climate Extremes special issue, 9, 47-56, doi:10.1016/j.wace.2015.04.001 Authors: Mueller, B., M.C. Hauser, C. Iles, R. Haque Rimi, F.W. Zwiers and H. Wan Publication Date: Sep 2015

    Human-induced increases in atmospheric greenhouse gas concentrations have led to rising global temperatures. Here we investigate changes in an annual temperature-based index, the growing season length, defined as the number of days with temperature above 5 °C. We show that over extratropical regions where wheat and maize are harvested, the increase in growing season length from 1956 to 2005 can be attributed to increasing greenhouse gas concentrations. Our analyses also show that climate change has increased the probability of extremely long growing seasons by a factor of 25, and decreased the probability of extremely short growing seasons. A lengthening of the growing season in regions with these mostly rain-fed crops could improve yields, provided that water availability does not become an issue. An expansion of areas with more than 150 days of growing season into the northern latitudes makes more land potentially available for planting wheat and maize. Furthermore, double-cropping can become an alternative to current practices in areas with very long growing seasons which are also shown to increase with a warming climate. These results suggest that there is a strong impact of anthropogenic climate change on growing season length. However, in some regions and with further exacerbated climate change, high temperatures may already be or may become a limiting factor for plant productivity.

  • Source Publication: Journal of Climate 28.17, 6938-6959, doi:10.1175/JCLI-D-14-00754.1. Authors: Cannon, A.J., S.R. Sobie and T.Q. Murdock Publication Date: Sep 2015

    Quantile mapping bias correction algorithms are commonly used to correct systematic distributional biases in precipitation outputs from climate models. Although they are effective at removing historical biases relative to observations, it has been found that quantile mapping can artificially corrupt future model-projected trends. Previous studies on the modification of precipitation trends by quantile mapping have focused on mean quantities, with less attention paid to extremes. This article investigates the extent to which quantile mapping algorithms modify global climate model (GCM) trends in mean precipitation and precipitation extremes indices. First, a bias correction algorithm, quantile delta mapping (QDM), that explicitly preserves relative changes in precipitation quantiles is presented. QDM is compared on synthetic data with detrended quantile mapping (DQM), which is designed to preserve trends in the mean, and with standard quantile mapping (QM). Next, methods are applied to phase 5 of the Coupled Model Intercomparison Project (CMIP5) daily precipitation projections over Canada. Performance is assessed based on precipitation extremes indices and results from a generalized extreme value analysis applied to annual precipitation maxima. QM can inflate the magnitude of relative trends in precipitation extremes with respect to the raw GCM, often substantially, as compared to DQM and especially QDM. The degree of corruption in the GCM trends by QM is particularly large for changes in long period return values. By the 2080s, relative changes in excess of +500% with respect to historical conditions are noted at some locations for 20-yr return values, with maximum changes by DQM and QDM nearing +240% and +140%, respectively, whereas raw GCM changes are never projected to exceed +120%.

  • Source Publication: Weather and Climate Extremes, 9, 2-5, doi:10.1016/j.wace.2015.08.003 Authors: Seneviratne, S.I. and F.W. Zwiers Publication Date: Aug 2015

    This special issue of Weather and Climate Extremes (WACE) includes a series of articles initiated during the 2014 WCRP summer school on the “Attribution and Prediction of Extreme Events”. The two-week summer school took place from 21st July to 4th August 2014 at the International Center for Theoretical Physics (ICTP) in Trieste, Italy, and was organized in the context of the WCRP Grand Challenge on Extremes.

  • Source Publication: Journal of Hydrometeorology, 16, 1273–1292, doi:10.1175/JHM‐D‐14‐0167.1 Authors: Shrestha, R.R., M.A. Schnorbus and A.J. Cannon Publication Date: Jun 2015

    Recent improvements in forecast skill of the climate system by dynamical climate models could lead to improvements in seasonal streamflow predictions. This study evaluates the hydrologic prediction skill of a dynamical climate model–driven hydrologic prediction system (CM-HPS), based on an ensemble of statistically downscaled outputs from the Canadian Seasonal to Interannual Prediction System (CanSIPS). For comparison, historical and future climate traces–driven ensemble streamflow prediction (ESP) was employed. The Variable Infiltration Capacity model (VIC) hydrologic model setup for the Fraser River basin, British Columbia, Canada, was used as a test bed for the two systems. In both cases, results revealed limited precipitation prediction skill. For streamflow prediction, the ESP approach has very limited or no correlation skill beyond the months influenced by initial hydrologic conditions, while the CM-HPS has moderately better correlation skill, attributable to the enhanced temperature prediction skill that results from CanSIPS’s ability to predict El Niño–Southern Oscillation (ENSO) and its teleconnections. The root-mean-square error, bias, and categorical skills for the two methods are mostly similar. Hydrologic modeling uncertainty also affects the prediction skill, and in some cases prediction skill is constrained by hydrologic model skill. Overall, the CM-HPS shows potential for seasonal streamflow prediction, and further enhancements in climate models could potentially to lead to more skillful hydrologic predictions

  • Source Publication: Journal of Hydrometeorology, 16, 1273–1292, doi:http://dx.doi.org/10.1175/JHM-D-14-0167.1 Authors: Shrestha, R.R., M.A. Schnorbus and A.J. Cannon Publication Date: Jun 2015

    Recent improvements in forecast skill of the climate system by dynamical climate models could lead to improvements in seasonal streamflow predictions. This study evaluates the hydrologic prediction skill of a dynamical climate model–driven hydrologic prediction system (CM-HPS), based on an ensemble of statistically downscaled outputs from the Canadian Seasonal to Interannual Prediction System (CanSIPS). For comparison, historical and future climate traces–driven ensemble streamflow prediction (ESP) was employed. The Variable Infiltration Capacity model (VIC) hydrologic model setup for the Fraser River basin, British Columbia, Canada, was used as a test bed for the two systems. In both cases, results revealed limited precipitation prediction skill. For streamflow prediction, the ESP approach has very limited or no correlation skill beyond the months influenced by initial hydrologic conditions, while the CM-HPS has moderately better correlation skill, attributable to the enhanced temperature prediction skill that results from CanSIPS’s ability to predict El Niño–Southern Oscillation (ENSO) and its teleconnections. The root-mean-square error, bias, and categorical skills for the two methods are mostly similar. Hydrologic modeling uncertainty also affects the prediction skill, and in some cases prediction skill is constrained by hydrologic model skill. Overall, the CM-HPS shows potential for seasonal streamflow prediction, and further enhancements in climate models could potentially to lead to more skillful hydrologic predictions.

  • Source Publication: Journal of Hydrologic Engineering, 04015043, doi: 10.1061/(ASCE)HE.1943-5584.0001250 Authors: Najafi M.R. and H. Moradkhani Publication Date: Jun 2015

    Various hydrologic models with different complexities have been developed to represent the characteristics of river basins, improve streamflow forecasts such as seasonal volumetric flow predictions, and meet other demands from different stakeholders. Because no single hydrologic model is able to perfectly simulate the observed flow, multimodel combination techniques are developed to combine forecasts obtained from different models and to quantify the uncertainties with the goal of improving upon single-model performance. In this study, a comprehensive set of multimodel ensemble averaging techniques with varying complexities are investigated for operational forecasting over four river basins in the Western United States. Ensemble merging models are divided into three categories of simple, intermediate, and complex, and comparison is made between each class by using a bootstrap approach. Analysis suggests that model combination effectively improves most of the individual seasonal forecasts and can outperform the best forecast model. Simple average, median, Bates-Granger, constrained linear regression, and Bayesian model averaging optimized by expectation maximization showed better results compared with other methods over three basins. For the Rogue River basin, the intermediate and complex models outperformed most of the individual forecasts and the simple methods. Multimodeling techniques based on information criteria showed similar performances.

  • Source Publication: Journal of Hydrology, 525, 352-361, doi: 10.1016/j.jhydrol.2015.03.045 Authors: Najafi M.R. and H. Moradkhani Publication Date: Jun 2015

    In this study multi-model ensemble analysis of extreme runoff is performed based on eight regional climate models (RCMs) provided by the North American Regional Climate Change Assessment Program (NARCCAP). Hydrologic simulation is performed by driving the Variable Infiltration Capacity (VIC) model over the Pacific Northwest region, for historical and future time periods. Extreme event analysis is then conducted using spatial hierarchical Bayesian modeling (SHB). Ensemble merging of extreme runoff is carried out using Bayesian Model Averaging (BMA) in which spatially distributed weights corresponding to each regional climate model are obtained. Comparison of the residuals before and after the multi-model combination shows that the merged signal generally outperforms the best individual signal. The climate model simulations show close performance regarding maximum and minimum temperature and wind speed, however, the differences are more pronounced for precipitation and runoff. Between-model variances increase for the future time series compared to the historical ones indicating larger uncertainties in climate change projections. The combined model is then used to predict projected seasonal runoff extremes and compare them with historical simulations. Ensemble average results suggest that seasonal extreme runoff will increase in most regions in particular the Rockies and west of the Cascades.

Pages