You are here
Publications Library
Primary tabs
-
Source Publication: Earth System Dynamics, 13, 1689–1713, doi:10.5194/esd-13-1689-2022
Publication Date: Dec 2022
Towards the end of June 2021, temperature records were broken by several degrees Celsius in several cities in the Pacific Northwest areas of the US and Canada, leading to spikes in sudden deaths and sharp increases in emergency calls and hospital visits for heat-related illnesses. Here we present a multi-model, multi-method attribution analysis to investigate the extent to which human-induced climate change has influenced the probability and intensity of extreme heat waves in this region. Based on observations, modelling and a classical statistical approach, the occurrence of a heat wave defined as the maximum daily temperature (TXx) observed in the area 45–52∘ N, 119–123∘ W, was found to be virtually impossible without human-caused climate change. The observed temperatures were so extreme that they lay far outside the range of historical temperature observations. This makes it hard to state with confidence how rare the event was. Using a statistical analysis that assumes that the heat wave is part of the same distribution as previous heat waves in this region led to a first-order estimation of the event frequency of the order of once in 1000 years under current climate conditions. Using this assumption and combining the results from the analysis of climate models and weather observations, we found that such a heat wave event would be at least 150 times less common without human-induced climate change. Also, this heat wave was about 2 ∘C hotter than a 1-in-1000-year heat wave would have been in 1850–1900, when global mean temperatures were 1.2 ∘C cooler than today. Looking into the future, in a world with 2 ∘C of global warming (0.8 ∘C warmer than today), a 1000-year event would be another degree hotter. Our results provide a strong warning: our rapidly warming climate is bringing us into uncharted territory with significant consequences for health, well-being and livelihoods. Adaptation and mitigation are urgently needed to prepare societies for a very different future.
-
Source Publication: Journal of Applied Meteorology and Climatology, 61, 9, 1139-1157. doi:10.1175/JAMC-D-21-0205.1
Publication Date: Dec 2022
Nocturnal warming events (NWEs) are abrupt interruptions in the typical cooling of surface temperatures at night. Using temperature time series from the high-resolution Vancouver Island School-Based Weather Station Network (VWSN) in British Columbia, Canada, we investigate temporal and spatial characteristics of NWEs. In this coastal region, NWEs are more frequently detected in winter than in summer, with a seasonal shift from slowly warming NWEs dominating the winter months to rapidly warming NWEs dominating the summer months. Slow-warming NWEs are of relatively small amplitude and exhibit slow cooling rates after the temperature peaks. In contrast, fast-warming NWEs have a temperature increase of several kelvins with shorter-duration temperature peaks. The median behavior of these distinct NWE classes at individual stations is similar across the entire set of stations. The spatial synchronicity of NWEs across the VWSN (determined by requiring NWEs at station pairs to occur within given time windows) decreases with distance, including substantial variability at nearby stations that reflects local influences. Fast-warming NWEs are observed to occur either simultaneously across a number of stations or in isolation at one station. Spatial synchronicity values are used to construct undirected networks to investigate spatial connectivity structures of NWEs. We find that, independent of individual seasons or NWE classes, the networks are largely unstructured, with no clear spatial connectivity structures related to local topography or direction.
-
Publication Date: Oct 2022
This is the Pacific Climate Impacts Consortium's 2021-2022 Corporate Report.
-
Publication Date: Jul 2022
This report, the first volume in the VIC Generation 2 deployment reports, provides a description of VIC-Glacier (VIC-GL) model changes and upgrades.
-
Publication Date: Jul 2022
This report, the second volume in the VIC Generation 2 deployment reports, provides a description of modelling glacier dynamics with the HydroConductor Model.
-
Publication Date: Jul 2022
This report, the third volume in the VIC Generation 2 deployment reports, provides a description of vegetation and topography parameterization.
-
Publication Date: Jul 2022
This, the fifth volume in the VIC Generation 2 deployment reports, provides a description of model calibration.
-
Publication Date: Jul 2022
This, the sixth volume in the VIC Generation 2 deployment reports, provides a description of model set-up and deployment for the Peace, Fraser, and Columbia basins.
-
Source Publication: Weather and Climate Extremes, 36, 100441, doi:10.1016/j.wace.2022.100441
Publication Date: Jun 2022
A strong atmospheric river made landfall in southwestern British Columbia, Canada on November 14th, 2021, bringing two days of intense precipitation to the region. The resulting floods and landslides led to the loss of at least five lives, cut Vancouver off entirely from the rest of Canada by road and rail, and made this the costliest natural disaster in the province's history. Here we show that when characterised in terms of storm-averaged water vapour transport, the variable typically used to characterise the intensity of atmospheric rivers, westerly atmospheric river events of this magnitude are approximately one in ten year events in the current climate of this region, and that such events have been made at least 60% more likely by the effects of human-induced climate change. Characterised in terms of the associated two-day precipitation, the event is substantially more extreme, approximately a one in fifty to one in a hundred year event, and the probability of events at least this large has been increased by a best estimate of 45% by human-induced climate change. The effects of this precipitation on streamflow were exacerbated by already wet conditions preceding the event, and by rising temperatures during the event that led to significant snowmelt, which led to streamflow maxima exceeding estimated one in a hundred year events in several basins in the region. Based on a large ensemble of simulations with a hydrological model which integrates the effects of multiple climatic drivers, we find that the probability of such extreme streamflow events in October to December has been increased by human-induced climate change by a best estimate of 120–330%. Together these results demonstrate the substantial human influence on this compound extreme event, and help motivate efforts to increase resiliency in the face of more frequent events of this kind in the future.
-
Publication Date: Jun 2022
This issue of the PCIC Update contains the following stories: Providing Extreme Streamflow Values for the Fraser River and Joint CMOS/ESC/CGU Conference. The staff profile for this issue is on Dr. Pei-Ling Wang.
-
Publication Date: May 2022
This issue of the PCIC Update covers the following stories: Downscaled CMIP6 Data Now Available; Release of the Design Value Explorer; IPCC Reports on Impacts, Adaptation, Vulnerability and Mitigation; and New Section and Sector Modules on ClimateData.ca. The Science Brief mentioned in this issue is on changes to Western Canadian glaciers. The talks discussed in this issue were delivered by Professor Ted Shepherd, Dr. Mohamed Ali Ben Alaya, Dr. Nathan Gillett and Markus Schnorbus, Dr. John Fyfe, Dr. Paul Kushner and Dr. Hans von Storch. The staff profile in this issue is on Stacey O'Sullivan.
-
Publication Date: Apr 2022
As a consequence of global warming, the world's glaciers have been shrinking. Changes to glaciers in BC could have wide-ranging impacts to BC's ecosystems and human communities, across multiple sectors. Remote sensing data has been invaluable in measuring and characterizing changes to the world's glaciers. Recent research published in Remote Sensing of the Environment using such data shows that western Canadian glaciers have been melting at an accelerating rate and examines how this is related to changes in seasonal temperature and precipitation. Here we discuss what these results tell us about changes to western Canada's glaciers.
-
Source Publication: Bulletin of the American Meteorological Society, 103, 3, S50-S54, doi:10.1175/BAMS-D-21-0143.1
Publication Date: Mar 2022
On 6–8 January 2021, a cold air outbreak swept across eastern China, peaking over the North China Plain the night of 6 January, when 219 weather stations recorded the lowest nighttime temperature since 1961. In total, 498 stations recorded the lowest daytime or nighttime temperature since 1961 during the 3-day event. This event, together with two other cold outbreaks that affected the region on 13–15 December 2020 and 29 December 2020–1 January 2021, led to historic peak electricity demand and resumption of the operation of the only remaining coalfired generating plant in Beijing. This analysis puts the cold outbreak into historical perspective by considering changes in the likelihood of such events over 1961–2020 in the context of a climate that is being warmed by anthropogenic forcing.
-
Source Publication: Climate Dynamics volume, 58, 793–809, doi:10.1007/s00382-021-05933-3
Publication Date: Feb 2022
We report on the characteristics of precipitation associated with three types of landfalling atmospheric rivers (ARs) over western North America in the winter season from 1980 to 2004. The ARs are classified according to three landfalling regions as southern, middle and northern types. Two main centers of precipitation are associated with the contributions by the ARs: one over Baja California linked to the southern type of the ARs, and the other over Washington State correlated with the northern and middle types of the ARs. ARs are seen to play a dominant role in the occurrences of extreme precipitation events, with a proportionately greater impact on more extreme events. Moisture flux convergence makes the dominant contribution to precipitation when ARs and extreme precipitation occur simultaneously in the studied areas. Moisture flux convergence in these cases is, in turn, dominated by the mean and transient moisture transported by the transient wind, with greater contribution from the latter, which is mainly concentrated in certain areas. The magnitude and direction of vertically integrated vapor transport (IVT) also play a role in determining the amount of precipitation received in the three regions considered. Larger IVT magnitude corresponds to more precipitation, while an IVT direction of about 220° (0° indicating east wind) is most favorable for high precipitation amount, which is especially obvious for the northern type of the ARs.
-
Publication Date: Feb 2022
PCIC is a regional climate service provider dedicated to ensuring the provision of quantitative, high qualityclimate information to stakeholders and the public in BC and more widely. PCIC considers itself to be a competent, innovative and reliable climate service provider that works at a very high level of technical proficiency. Motivated by our stakeholders’ needs, PCIC bases its services on results obtained from the global climate research community and its own applied, regional climate research. It also works to increase the capacity of others to use climate information and understand its limitations.
This plan articulates PCIC’s ambition to serve as THE authoritative climate services provider in our region by setting out several service objectives for the organization that encompass a spectrum of activities ranging from direct data delivery to user-specific interpretation and training. These overarching service objectives are supported by several strategic objectives that are required to achieve our service objectives as well as a strategy for electronic services delivery. A key tool in achieving these objectives will be the careful use of climate change simulations produced for Phase 6 of the Coupled Model Intercomparison Project (CMIP6; Eyring et al., 2016), which uses updated models compared to those considered in IPCC (2014), and considers a wider range of emissions scenarios, called Shared Socioeconomic Pathways (SSPs).
-
Publication Date: Feb 2022
This PCIC Primer, on Understanding Future Climate Scenarios, provides context for, and an explanation of, two sets of emissions scenarios, the Representative Concentration Pathways (RCPs), used for the fifth phase of the Coupled Model Intercomparison Project (CMIP5) and the Shared Socioeconomic Pathways (SSPs), used in CMIP6.
-
Source Publication: Environmental Research Communications, 4, 1, 015009, doi:10.1088/2515-7620/ac4bab
Publication Date: Jan 2022
Understanding the dynamics of water-energy-food (WEF) nexus interactions with climate change and human intervention helps inform policymaking. This study demonstrates the WEF nexus behavior under ensembles of climate change, transboundary inflows, and policy options, and evaluates the overall nexus performance using a previously developed system dynamics-based WEF nexus model—WEF-Sask. The climate scenarios include a baseline (1986–2014) and near-future climate projections (2021–2050). The approach is demonstrated through the case study of Saskatchewan, Canada. Results show that rising temperature with increased rainfall likely maintains reliable food and feed production. The climate scenarios characterized by a combination of moderate temperature increase and slightly less rainfall or higher temperature increase with slightly higher rainfall are easier to adapt to by irrigation expansion. However, such expansion uses a large amount of water resulting in reduced hydropower production. In contrast, higher temperature, combined with less rainfall, such as SSP370 (+2.4 °C, −6 mm), is difficult to adapt to by irrigation expansion. Renewable energy expansion, the most effective climate change mitigation option in Saskatchewan, leads to the best nexus performance during 2021–2050, reducing total water demand, groundwater demand, greenhouse gas (GHG) emissions, and potentially increasing water available for food&feed production. In this study, we recommend and use food&feed and power production targets and provide an approach to assessing the impacts of hydroclimate and policy options on the WEF nexus, along with suggestions for adapting the agriculture and energy sectors to climate change.
-
Publication Date: Jan 2022
As the climate warms, the Earth's cryosphere, comprised of snow, ice and frozen soil, including permafrost, has been shrinking. Changes in snow cover, depth and the timing of snow melt can have impacts on ecosystems and human communities. Data on snow cover and depth is used to identify historical trends and provides a baseline with which to compare projected future changes.
Recent research published in Atmosphere-Ocean examines trends in snow cover as measured at observing stations by ruler and sonic sensors, looking at how snow cover has changed over the 1955-2017 period and comparing the two methods of measurement. In this Science Brief we discuss what these results tell us about snow cover in Canada's changing climate.
-
Source Publication: Journal of Applied Meteorology and Climatology, 61, 1, 77-95, doi:10.1175/JAMC-D-20-0260.1
Publication Date: Jan 2022
Information about snow water equivalent in southwestern British Columbia, Canada, is used for flood management, agriculture, fisheries, and water resource planning. This study evaluates whether a process-based, energy balance snow model supplied with high-resolution statistically downscaled temperature and precipitation data can effectively simulate snow water equivalent (SWE) in the mountainous terrain of this region. Daily values of SWE from 1951 to 2018 are simulated at 1-km resolution and evaluated using a reanalysis SWE product [Snow Data Assimilation System (SNODAS)], manual snow-survey measurements at 41 sites, and automated snow pillows at six locations in the study region. Simulated SWE matches observed interannual variability well (R2 > 0.8 for annual maximum SWE), but peak SWE biases of 20%–40% occur at some sites in the study domain, and higher biases occur where observed SWE is very low. Modeled SWE displays lower bias relative to SNODAS reanalysis at most manual survey locations. Future projections for the study area are produced using 12 downscaled climate model simulations and are used to illustrate the impacts of climate change on SWE at 1°, 2°, and 3°C of warming. Model results are used to quantify spring SWE changes at different elevations of the Whistler mountain ski resort and the sensitivity of annual peak SWE in the Metropolitan Vancouver municipal watersheds to moderate temperature increases. The results both illustrate the potential utility of a process-based snow model and identify areas where the input meteorological variables could be improved.
-
Source Publication: Journal of Applied Meteorology and Climatology, 61, 1, 77-95, doi: 10.1175/JAMC-D-20-0260.1
Publication Date: Jan 2022
Information about snow water equivalent in southwestern British Columbia, Canada, is used for flood management, agriculture, fisheries, and water resource planning. This study evaluates whether a process-based, energy balance snow model supplied with high-resolution statistically downscaled temperature and precipitation data can effectively simulate snow water equivalent (SWE) in the mountainous terrain of this region. Daily values of SWE from 1951 to 2018 are simulated at 1-km resolution and evaluated using a reanalysis SWE product [Snow Data Assimilation System (SNODAS)], manual snow-survey measurements at 41 sites, and automated snow pillows at six locations in the study region. Simulated SWE matches observed interannual variability well (R2 > 0.8 for annual maximum SWE), but peak SWE biases of 20%–40% occur at some sites in the study domain, and higher biases occur where observed SWE is very low. Modeled SWE displays lower bias relative to SNODAS reanalysis at most manual survey locations. Future projections for the study area are produced using 12 downscaled climate model simulations and are used to illustrate the impacts of climate change on SWE at 1°, 2°, and 3°C of warming. Model results are used to quantify spring SWE changes at different elevations of the Whistler mountain ski resort and the sensitivity of annual peak SWE in the Metropolitan Vancouver municipal watersheds to moderate temperature increases. The results both illustrate the potential utility of a process-based snow model and identify areas where the input meteorological variables could be improved.