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ABSTRACT

Five statistical downscaling methods [automated regression-based statistical downscaling (ASD), bias

correction spatial disaggregation (BCSD), quantile regression neural networks (QRNN), TreeGen (TG), and

expanded downscaling (XDS)] are compared with respect to representing climatic extremes. The tests are

conducted at six stations from the coastal, mountainous, and taiga region of British Columbia, Canada, whose

climatic extremes are measured using the 27 Climate Indices of Extremes (ClimDEX; http://www.climdex.

org/climdex/index.action) indices. All methods are calibrated from data prior to 1991, and tested against the

two decades from 1991 to 2010. A three-step testing procedure is used to establish a given method as reliable

for any given index. The first step analyzes the sensitivity of a method to actual index anomalies by correlating

observed and NCEP-downscaled annual index values; then, whether the distribution of an index corresponds

to observations is tested. Finally, this latter test is applied to a downscaled climate simulation. This gives

a total of 486 single and 162 combined tests. The temperature-related indices pass about twice as many tests as

the precipitation indices, and temporally more complex indices that involve consecutive days pass none of the

combined tests. With respect to regions, there is some tendency of better performance at the coastal and

mountaintop stations. With respect to methods, XDS performed best, on average, with 19% (48%) of passed

combined (single) tests, followed by BCSD and QRNN with 10% (45%) and 10% (31%), respectively, ASD

with 6% (23%), and TG with 4% (21%) of passed tests. Limitations of the testing approach and possible

consequences for the downscaling of extremes in these regions are discussed.

1. Introduction

Interest in global warming is increasingly shifting from

assessments of average behavior to understanding and

analyzing the effects on extremes. Because of the very

nature of extreme events being rare, corresponding

statistical assessments are loaded with uncertainty. This

can partly be overcome, at the expense of spatial and

temporal detail, by emphasizing either global or conti-

nental scales and ensemble results of multiple climate

models (Kharin and Zwiers 2000; Tebaldi et al. 2006;

Kharin et al. 2007; Min et al. 2011). To regain the small-

scale information and bridge the gap between the coarse

scales of simulated climate and the local scales where

climatic extremes usually materialize, a whole new dis-

cipline has evolved that is commonly referred to as

‘‘downscaling.’’ By employing physical or statistical

methodology downscaling ‘‘distills’’ as much small-scale

information out of global climate models (GCMs) as

possible [see Wilby et al. (2004) for a comprehensive

overview].

By focusing on local extremes, therefore, one is con-

fronted with both the shrinkage of sample size and the

weakening of theoretical linkage to increasing green-

house gases, as compared to, for example, global climate

models. Nevertheless, a whole body of studies has emerged

that tackle the impact of global warming on local extremes

using some form of downscaling (Schubert and Henderson-

Sellers 1997; Olsson et al. 2001; Harpham and Wilby

2005; Dibike and Coulibaly 2006; Fowler et al. 2007; Vrac

and Naveau 2007; Busuioc et al. 2008; Benestad 2010;
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Mannshardt-Shamseldin et al. 2010); the European Sta-

tistical and Regional Dynamical Downscaling of Extremes

for European Seasons (STARDEX; http://www.cru.uea.ac.

uk/projects/stardex) was solely devoted to this topic. It is

well known that downscaling comes in two ‘‘flavors’’—the

dynamical, using regional climate models (RCMs), and the

statistical, using empirical statistical techniques. It is also

well known that both have their advantages and disad-

vantages, and often they are not even easy to compare

because of their different target applications.

Because we are focusing on local extremes this study

solely deals with the statistical approach (like STARDEX).

Compared to its dynamical sister, statistical downscaling

is more heterogeneous and often consists of a patchwork

of different methods, recipes, and adjustments that would

be unacceptable in a dynamical context. Bias correction

techniques, as one example, are an integral part of many

empirical methods (including those in this study), whereas

they would be considered illegitimate as part of dynamical

downscaling. The major problem here is that they usually

represent fairly heterogeneous pre- and postprocessing

procedures external to a core statistical model, which

operate on long-term parameters of the simulated GCM

climate. While the core method itself can be estimated

and verified using standard statistical methodology based

on short-term weather observations, verification of the

external procedures requires an entire array of inde-

pendent climates, reflected only in observational series

spanning multiple decades. Methodologically, such ad-

justments are related to the flux correction schemes of

earlier coupled GCMs (Sausen et al. 1988); because each

are calibrated against observed datasets the coupling of

atmosphere and ocean models to one another often re-

sulted in a long-term drift that posed considerable prob-

lems for the interpretation of climate scenarios.

Consequently, with little or no foundation in physical

principles all of these empirical tools need thorough veri-

fication, especially when it comes to extremes. In the words

of Kundzewicz and Stakhiv (2010, p. 1087), bias correc-

tion techniques ‘‘merely represent an ad hoc curve-fitting

exercise of convenience, rather than a result of impec-

cable physically-based theory.’’ Compared to standard

statistical methods, which possess a known uncertainty,

there is always an element of unknown uncertainty (cf.

Department of Defense 2002) with regard to any of these

nonstandard methods. On the other hand, most of these

techniques operate just as a correction, so their effect is

second order, unless the correction is a major one.

Given the multitude of techniques and results, down-

scaling intercomparison projects provide guidance for

choosing the best method for a purpose in question.

Ideally, there should be just one big intercomparison in-

cluding all possible methods, with well-defined rules and

performance measures, preferably stratified according to

region. The climate Coupled Model Intercomparison

Project (CMIP; Meehl et al. 2000) could certainly serve as

a role model here. A very comprehensive in-

tercomparison was undertaken by Schmidli et al. (2007),

who analyze and compare the dynamically and statisti-

cally downscaled climate simulations at the RCM scale

for the European Alps, using a number of statistics for

daily precipitation. One of their main results is that all of

the statistical methods underestimate the present in-

terannual variability. For three watersheds in the western

United States Hay and Clark (2003) compare the daily

runoff simulated from downscaled atmospheric fields;

a regression-based method produced the best results both

with respect to the annual cycle as well as daily variations.

Using a subset of the STARDEX indices, Haylock et al.

(2006) compared the performance of several more ad-

vanced methods to downscale heavy precipitation over

England, and obtained the best results from neural nets

[which were not considered by Hay and Clark (2003)].

In this study, we test a broad range of temperature-

and precipitation-related extremes as measured by the

set of 27 core indices, the Climate Indices of Extremes

(ClimDEX). The ClimDEX indices (http://www.clim-

dex.org), which are listed in Table 1, do not generally

reflect the most extreme events conceivable, but instead

represent ‘‘the more extreme aspects of climate,’’ which

are (i) known to be relevant to a broad range of impact

fields (Peterson 2005), and (ii) still statistically man-

ageable so that they can be reliably estimated from

current data for the present and future. With both as-

pects in mind, ClimDEX has been adopted as a stan-

dard for extremes by the World Climate Research

Programme (http://www.clivar.org/organization/ex-

tremes) and will be used for the next Intergovernmental

Panel on Climate Change (IPCC) report (Zhang et al.

2011). We apply five advanced downscaling methods to

the highly varying climate zones of British Columbia,

Canada, which range from coastal to mountainous to

subarctic climate. The downscaling methods are as fol-

lows: automated regression-based statistical down-

scaling (ASD; based on Wilby et al. 2002), bias

correction spatial disaggregation (BCSD; Wood et al.

2002; Salathe et al. 2007), quantile regression neural

networks (QRNN; Cannon 2011), TreeGen (TG; Stahl

et al. 2008), and expanded downscaling (XDS; Bürger

1996); details of the methods are described in section 2.

The testing is threefold:

1) measure the sensitivity to actual (annual) climate

anomalies;

2) test for the representation of present climate from

reanalyses; and
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3) test for the representation of present climate from

GCMs.

Unlike the European comparison studies above (Haylock

et al. 2006; Schmidli et al. 2007), we provide well-defined

criteria for the passing of each test, resulting in a unique

set of successful method–index pairs. To our knowledge

no previous study has conducted such a rigorous testing

procedure. With some adjustments (mainly of the de-

fining thresholds) the same procedure can be applied to

RCM and even GCM fields to obtain entire maps of

ClimDEX indices (Sillmann and Roeckner 2007). An in-

tercomparison across statistical and dynamical techniques

requires a transfer of scales, though, and this is a task that is

largely nontrivial and beyond the scope of our study.

The tests will be done using two fully independent de-

cades of daily data, details of which are outlined in section

3. For each of three focus regions of British Columbia

(section 4) we analyze the results separately (section 5)

and discuss the implications for the applications of future

scenarios and the direction of further work and improve-

ments (section 6). Note that test 1 (sensitivity to actual

anomalies) is not suitable (and will fail) for methods that

represent present climate in a purely stochastic form, such

as weather generators. Accordingly, such approaches will

not be considered here.

The focus of this study lies on verification relative to

the present climate. A subsequent study is planned that

considers the implications for future climate.

2. Statistical downscaling

As outlined in the introduction, statistical downscal-

ing is a very heterogeneous enterprise drawing upon

a large variety of sources, ranging from sophisticated

statistical methods, such as stepwise regression or neural

nets, to rather practical numerical recipes, such as the

delta method (see below) or variance adjustment. Ideally,

one should try to isolate the single tools and test their

usefulness independently. Because of coupling effects,

TABLE 1. ClimDEX indices.

ID Indicator name Definitions Units

CDD Consecutive dry days Maximum number of consecutive days with RR , 1 mm days

CSDI Cold spell duration Days with at least six consecutive days when TN , 10th percentile days

CWD Consecutive wet days Maximum number of consecutive days with RR $ 1 mm days

DTR Diurnal T range Monthly mean difference between TX and TN 8C

FD0 Frost days Annual count when TN (daily minimum) , 08C days

GSL Growing season length Days between first and last span of at least six warm

enough days

days

ID0 Ice days Annual count when TX (daily maximum) , 08C days

PRCPTOT Annual total wet-day

precipitation

Annual total PRCP in wet days (RR $ 1 mm) mm

R10 Number of heavy

precipitation days

Annual count of days when PRCP .5 10 mm days

R20 Number of very heavy

precipitation days

Annual count of days when PRCP $ 20 mm days

R95p Very wet days Annual total PRCP when RR . 95th percentile mm

R99p Extremely wet days Annual total PRCP when RR . 99th percentile mm

R25 Number of days above

25 mm

Days when PRCP . 25 mm Days

RX1day Max 1-day precipitation Monthly maximum 1-day precipitation mm

Rx5day Max 5-day precipitation

amount

Monthly maximum consecutive 5-day precipitation mm

SDII Simple daily intensity

index

Annual total precipitation divided by the number of

wet days (PRCP $ 1 mm)

mm day21

SU25 Summer days Annual count when TX (daily maximum) . 258C days

TN10p Cool nights Percentage of days when TN , 10th percentile %

TN90p Warm nights Percentage of days when TN . 90th percentile %

TNn Min TN Monthly minimum value of daily minimum temp 8C

TNx Max TN Monthly maximum value of daily minimum temp 8C

TR Tropical nights Annual count when TN (daily minimum) . 208C days

TX10p Cool days Percentage of days when TX , 10th percentile %

TX90p Warm days Percentage of days when TX . 90th percentile %

TXn Min TX Monthly minimum value of daily maximum temp 8C

TXx Max TX Monthly maximum value of daily maximum temp 8C

WSDI Warm spell duration Days with at least six consecutive days when TX . 90th percentile days
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however, the combined performance, which is what

counts in applications, is quite unpredictable from the

single performance. For an intercomparison study such as

this one, it is more feasible, therefore, to assess the

combined effect of the various tools as they appear in

a full downscaling application. Moreover, and most im-

portantly, we wanted to test the methods as they are

being used, to better rate the performance of past appli-

cations.

Common to most empirical downscaling methods is a

training or calibration phase of a transfer function, where

the adjustable function parameters are estimated from

the observed atmosphere (reanalysis) and local station

data in a period of overlapping data. That transfer func-

tion could then be applied to the same or similar atmo-

spheric data to obtain corresponding downscaled local

data and then, for example, compared to observations

(verification). It could in principle be applied to GCM-

simulated fields as well. However, systematic GCM biases

(relative to reanalyses) interfere, which occasionally even

exceed a projected climate change signal, with potentially

dramatic effects on subsequent impact applications, such as

a hydrologic model. Therefore, bias correction is an integral

part of most downscaling methods (Dehn and Buma 1999;

Easterling 1999; von Storch 1999; Chen 2002; Wood et al.

2002; Kysely 2002; Hay and Clark 2003; Huth 2004; Fowler

et al. 2007; Maurer and Hidalgo 2008; Maraun et al. 2010).

When we set up our testing experiments, our goal was

to use each method as it was used before in published

studies by other research groups, or as it would be used

by a novice user in publicly available, user-friendly meth-

ods. In the process, a few smaller errors were found and

corrected before being applied here.

Of the five methods tested in this study at least four

are fairly advanced and not easily available to the av-

erage user, so our choice is in part dictated by oppor-

tunity. However, they span a wide range of different

approaches, which meets the objectives of this work.

a. Methods

All of our methods, listed below, simulate variations

about the long-term climatological mean. One such var-

iation is the seasonal cycle, and it is important whether

that cycle is treated internally, as imposed by seasonally

varying predictors, or externally, as imposed determin-

istically through fitted harmonics. For ASD and BCSD

the former (internal) applies and for QRNN, TG, and

XDS the latter (external).

1) AUTOMATED REGRESSION-BASED

STATISTICAL DOWNSCALING

Driven by the need to make easy-to-use downscaling

tools available to a larger community, ASD (Hessami

et al. 2008) was developed as an automated version of

the statistical downscaling model (SDSM) of Wilby et al.

(1999, 2002). These sources describe SDSM as a ‘‘hybrid

of the stochastic weather generator and transfer func-

tion methods.’’ The method first links large-scale cir-

culation patterns and atmospheric moisture variables

with local-scale weather parameters (precipitation oc-

currence and amount, minimum and maximum tem-

perature), using an (auto)regression approach, and then

adjusts simulated local variables to account for loss of

variance and residual bias (the stochastic weather gen-

erator component).

The automatization is designed to replace SDSM’s

subjective method of predictor selection, requiring sig-

nificant input on the part of the user, with a more objec-

tive approach. For example, it uses a backward stepwise

multiple linear regression (e.g., Seber and Lee 2003),

starting from a fairly large suite of standard potential

predictors (cf. Hessami et al. 2008). Loss of variance,

a characteristic of any regression method, is accounted for

by adding a white noise process, the variance of which,

along with some bias adjustments, can be set either

manually or automatically. Our version of ASD, along

with most others, does not apply any extra measures to

deal with predictor collinearities; this was implemented

only in recent versions of ASD. Its hybrid nature renders

each ASD simulation partly stochastic so that extra care is

required for the validation (see section 3).

Additional studies that make use of ASD or SDSM

include Wilby et al. (2003, 2006), Wilby (2005), Khan

et al. (2006), and Gachon and Dibike (2007).

2) BIAS-CORRECTED SPATIAL DISAGGREGATION

BCSD (Wood et al. 2002) is geared toward providing

gridded, high-resolution temperature and precipitation

fields over relatively large domains, mainly for driving

hydrologic models. GCM data are bias corrected, spa-

tially disaggregated (to a finer grid or station data) and

finally temporally disaggregated to a daily time step. To

avoid the extra handling of wet and dry days the bias

correction part of BCSD is applied to monthly GCM

data only. The present and most widely used version

of BCSD uses mean temperature as a driver; minimum

and maximum temperature are derived indirectly using

climatological temperature range. The main steps of

BCSD are as follows:

1) Bias correction of monthly GCM fields, using aggre-

gated observations. A quantile mapping (Panofsky

and Brier 1958) is employed to adjust the monthly

large-scale fields. The adjustment is done on the de-

trended data, which are retrended afterward to have

the same climatic trends as the original large-scale
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fields. To formalize quantile mapping, we denote the

modeled series and modeled and observed cumulative

distribution functions by M, FM, and FO, respectively.

Let u: [0 1] / [0 1] denote the identity map of the unit

interval. The final mapping of the modeled series is

done as follows:

M f
0

Mqm

FM Y [ F21
O

[0, 1] u/

,

[0, 1]

(1)

which is formally f 5 FM uFO
21: M / Mqm. The

mapping must be estimated using data from the cal-

ibration period. Data outside the range of the cali-

bration percentiles are extrapolated using Weibull

(Gumbel) fits to F for precipitation minimum (max-

imum) and a Gaussian fit for temperature. Note that

these fits strongly influence the characteristics of the

(monthly) extremes.

2) Spatial and temporal disaggregation using a delta

approach. The monthly large-scale values of pre-

cipitation (P) and temperature (T) are first disag-

gregated spatially, using high-resolution correction

factors (for P) and summands (for T). These values

are finally temporally disaggregated by picking a ran-

dom historic month and adjusting its daily values

(multiplicatively and additively) to reproduce the

monthly value.

Additional studies that make use of BCSD include

Christensen et al. (2004), VanRheenen et al. (2004),

Maurer and Duffy (2005), Christensen and Lettenmaier

(2007), Hayhoe et al. (2007), Maurer et al. (2007), and

Schnorbus et al. (2011).

3) QUANTILE REGRESSION NEURAL NETWORK

QRNN (Taylor 2000) estimates conditional values

of an individual quantile using a multilayer perceptron

neural network. If one develops QRNN methods for

a range of quantiles q 5 0.1, . . . , 0.9, then the result is

an estimate of the full predictand distribution, without

extra assumptions about the parametric form of the

distribution. In a downscaling context, this means

that the shape of the distribution may change under

future climate conditions as the large-scale GCM

predictors change. Details are given in Cannon (2011).

QRNN is methodologically similar to the multilayer

perceptron neural network MLPR used by Haylock

et al. (2006).

Unlike XDS (see below), QRNN predictors need not

be normalized because of the nonlinearity of the un-

derlying model. However, when making predictions for

GCM scenarios, it is assumed that the statistical char-

acteristics of the GCM predictors match those from the

reanalysis over the calibration period. If this is not the

case, then a bias correction step, as in BCSD, must be

applied. Here, a simple linear rescaling is used to match

climatological means and variances.

Because QRNN downscaling models are probabilis-

tic, results in this study are based on 20 simulations from

the estimated conditional distributions. Specifically, the

conditional quantile function on a given day is obtained

by linearly interpolating between predicted quantiles

from the set of fitted QRNN models. Outside the range

of the fitted quantile probabilities, exponential lower/

upper tails are assumed following Quinonero-Candela

et al. (2006). Simulated values are obtained by entering

a uniform random variate into the conditional quantile

function.

Because of its novelty QRNN has not been used apart

from (Cannon 2011). Its source code (R) can be ob-

tained online (http://cran.r-project.org/web/packages/

qrnn).

4) TREEGEN

TG is a hybrid downscaling technique that draws upon

several approaches to statistical downscaling, including

synoptic weather typing, regression modeling, analog

resampling, and stochastic weather generation. TG is

driven by daily atmospheric fields. The following steps

are carried out independently for each station:

1) Predictor selection is based on common principal

components (PCs) of National Centers for Environ-

mental Prediction (NCEP) and the GCM fields (see

section 2b).

2) Synoptic types are determined using a multivariate

regression tree that recursively splits observed data

into increasingly homogeneous groups on the basis

of thresholds in the PC scores (Cannon et al. 2002).

Values of the thresholds are optimized so that the

associated surface temperature and precipitation ob-

servations are placed into groups (or weather map

types) that minimize within-group sums of squares

error. Following (Cannon et al. 2002), 25 map types

are identified for the study domain.

3) Once thresholds have been identified using the his-

torical record predictor PCs are then entered into the

regression tree, defining a unique map type for each

simulation day.

4) For each simulation day an observation from the

predicted weather type is picked stochastically, with

a probability that is inversely proportional to the

Euclidean distance between its predecessor and the

previous simulated day.
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5) Because simulated low-frequency variability in sur-

face climate conditions is exclusively due to changes

in the frequency and timing of the synoptic map

types, a low-frequency correction is applied to each

weather type separately, as follows: (i) interannual

variability at the GCM grid point is superimposed

onto the nonparametric weather generator outputs;

and (ii) trend corrections are applied additively for

temperature and multiplicatively for precipitation to

match the trends from the nearest GCM grid point.

The stochastic component of TG requires (as for ASD)

extra consideration for the test setup described in

section 3.

Studies that make use of TG include Stahl et al. (2008)

and Allen et al. (2010).

5) EXPANDED DOWNSCALING

XDS is born out of the idea of simulating local events

that are as close to and consistent with the prevailing

atmospheric circulation, but at the same time generate

realistic local covariability (of variables and stations).

Let predictors and predictands be denoted by x(t) and

y(t), respectively. Whereas in the classical linear re-

gression approach one seeks a matrix Q that minimizes

the error xQ 2 y, this unconditional error criterion is

relaxed in favor of searching only through those Q that

preserve local covariability. This leads to the following

constraint optimization problem,

XDS 5 arg min
Q

(kxQ 2 yk), subj. to Q9x9xQ 5 y9y,

(2)

which simply means that the matrix Q that minimizes the

error xQ 2 y is sought among those that preserve local

covariance (xQ)9xQ 5 Q9x9xQ 5 y9y. Equation (2) has as

a unique solution, XDS, which we call the expanded

downscaling or XDS model. As an optimization prob-

lem the solution is only approximate and in previous

applications its estimation required large computing

resources. Only recently it was found (Bürger et al.

2009) that Eq. (2) can be recast as an orthogonal Pro-

crustes problem from statistical shape analysis (Dryden

and Mardia 1998). Denoting the Cholesky factors of x9x

and y9y as Gx and Gy, respectively, the solution has the

form

ULV 5 Gyy9xG21
x (SVD)

XDS 5 G21
x VU9Gy. (3)

Because the main building blocks of Eq. (3) are

derived from (cross-)covariances and only normal

(Gaussian) distributions are fully characterized by the

first and second moments, for the estimation of XDS

the variables in question (x and y) should be trans-

formed into the normalized domain. This can be

achieved for any random variable X using the proba-

bility integral transform (probit), as follows: the image

of X under the cumulative distribution function is

uniformly distributed, and applying to this image the

inverse normal distribution (Gaussian quantile) func-

tion results in a normally distributed variable. The sta-

tistics of extremes are therefore mainly defined through

the probit parameters. The preservation of local co-

variance, including realistic variability and interstation

correlations, renders XDS particularly useful for hydro-

logic applications where it has been applied most fre-

quently (Dehn et al. 2000; Müller-Wohlfeil et al. 2000;

Menzel and Bürger, 2002; Bronstert 2004; Menzel et al.

2006; Bürger et al. 2009; see also (Wilby et al. 2004).

Experimental sources (Octave/Matlab) can be obtained

online (http://xds.googlecode.com).

b. Predictors

Each method usually comes with its own set of at-

mospheric predictors. For example, some methods use

upper-level atmospheric information and others only

surface data. The matrix of (potential) predictors is

shown in Table 2; note that QRNN, TG, and XDS

predictors are synoptic fields.

ASD: We selected from each level an optimum grid

point (based on correlation) and defined the aver-

age of its neighbors as a potential predictor. The

stepwise regression identified an average of six

predictors per variable.

BCSD: We take for each station the nearest grid point

of the corresponding variable, that is, one predictor

per predictand.

QRNN: The domain between (358N, 2158E) and

(658N, 2558E) is used. Predictors were screened

separately for each station and predictand variable

using the regression tree methodology described by

Cannon (2008). Seasonal anomalies of gridpoint

predictors were entered as inputs to a regression

tree targeted on the station predictand. Only those

variables that formed splits in the tree were used as

predictors. Sine and cosine of the day of year were

added as additional predictors to account for sea-

sonal variations in the predictor–predictand rela-

tionships.

TG: It uses the dominant common PCs (95%) of the

QRNN predictors, based on pooling NCEP and the

historic GCM covariances. This leads to about 10–

20 predictors per predictand.
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XDS: We used a rectangle of about 148 longitude and

108 latitude about the center of each region in a 2.58

resolution and projected each field onto the domi-

nant PCs, retaining 99% of the variance. The opti-

mum number of retained PCs was estimated using

a split sample method, by training XDS on 1961–75

data and validating on 1976–90. This leads to about

50 predictors for each region.

The testing would certainly have benefited from the

use of a common predictor set. However, the employ-

ment of specific forcing fields is so interwoven with each

method that we have taken them as part of the method

itself. For example, a crucial component of the ASD is

the stepwise regression, starting from a rather large

number of potential predictors. If that component is

removed then the method is no longer automatic and

would no longer deserve the ‘‘A’’ in ASD. Likewise,

much of the simplicity of BCSD derives from its use of

a sparse predictor set (temperature and precipitation).

3. Test setup

The testing consists of comparing observed and

downscaled indices of ClimDEX from the independent

period from 1991 to 2010. It is made up of three single

tests, all of which are crucial to derive future information

from present climate in a reliable way. We require that

a method

(test 1) adequately responds to actual anomalies in the

reanalyses,

(test 2) reproduces the present distribution of an

index from reanalyses,

(test 3) reproduces the present distribution of an

index from the GCM.

TABLE 2. The matrix of (potential) predictors. Boldface indicates predictor fields.

ASD BCSD QRNN TG XDS

500 hPa T, q, u, y, d, z z z

700 hPa T, q, u, y

850 hPa T, q, u, y, d, z RH, T, q, u, v, z RH, T, q, u, y, z T, q, u, y

Surface T, q, u, y, d, z T, P T, P, SLP T, P, SLP P

FIG. 1. The study area with stations.
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Accordingly, for any given pair of method and index

all tests should be passed in order to be deemed reliable.

The passing of test 3 likely depends on the GCM in

question, so one may want to assign some average mea-

sure to a method across many GCMs. For the present

study only one GCM was available that satisfied all of the

necessary data requirements to apply all of the methods

(see below).

Test 1 checks whether a method is sensitive to climatic

anomalies. For example, if one year shows an excep-

tionally high value of annual total wet-day precipitation

(PRCPTOT; see Table 1) one would attribute this to

some anomalous large-scale circulation pattern. If this

incident is considered to be more likely in a changing

climate, then its occurrence or nonoccurrence ought to

be reflected by the downscaling. The test consists of

checking whether a simulated index (i.e., one derived

from simulations) has significantly nonzero correlations

to the observed index, in which case the method/index

passes the test. We base this test on annual values as

a compromise between what is considered to be a rele-

vant time scale of climate change and the size of

TABLE 3. Regions and stations used for the comparison, along with characteristic temperature (T) and precipitation (P). Parenthesized

symbols are used in summary tables.

Region Station ID Lon (8) Lat (8) Alt (m) T (8C) P (mm day21)

Mountains

Kootenay (M1) 1154400 2116.05 50.88 1170 2.3 511.2

Golden (M2) 1173210 2116.98 51.30 785 4.7 475.2

Mt. Fidelity (M3) 117CA90 2117.70 51.23 1875 0.2 2101.6

Taiga

Fort Nelson (T1) 1192940 2122.60 58.83 382 20.7 451.7

Coast

Shawnigan (C1) 1017230 2123.63 48.65 138 9.6 1247.6

Victoria (C2) 1018620 2123.43 48.65 19 9.7 883.3

TABLE 4. Summary table for test 1; see Table 3 for symbols.

Index ASD BCSD QRNN TG XDS

CDD

CSDI M3 C1M1M2M3 C1C2M1M2 M1M2M3

CWD C1

DTR C1 C1M1

FD C1C2M2M3T1 C1C2M3T1 C1C2M3T1 M1M3T1 C1C2M2M3T1

GSL M3 C2M1M3T1 M1M2M3T1

ID C1C2M1M2M3 M1M2 C1C2M1M2M3T1 C1M1M2M3T1 C1M1M2M3T1

PRCPTOT C2 C1C2 C1C2 C1C2 C1C2M3T1

R10 C1C2 C2 C2 C2M3

R20 C1 C1M3T1

R95p C2M3T1

R99p

R25 C1 C2M3

RX1day C1

RX5day M2

SDII C1C2M2 C2 M3T1

SU C1C2M1M2M3 C1C2M1M2M3T1 M1M2M3T1 C1M1M2 C1C2M1M2M3T1

TN10p C1C2M1M2M3T1 M1M2M3T1 C1C2M1M2M3T1 M1M2M3T1 C1C2M1M2M3T1

TN90p C1C2M2M3 C1M1M2M3 C1C2M1M2M3T1 M2M3 C1M2M3

TNn C1 C1M1M2M3T1 C1T1 C1M1M3T1

TNx C1M2 C1

TR

TX10p C1C2M1M2M3T1 M1M2T1 C1C2M1M2M3T1 M1M3T1 C1C2M1M2M3

TX90p C1C2M1M2M3 M1M2M3T1 C1C2M1M2M3T1 M1M3 C1C2M1M2M3

TXn C1 C1C2M2M3T1 M2M3 C1C2M2M3T1

TXx M3 M3 C1M3 C1M2M3

WSDI M1

Total No. 44 39 63 33 75
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independent samples to test. Serial correlation is taken

into account (Ebisuzaki 1997).

To compare the simulated distribution for an index,

either from NCEP (test 2) or from a GCM (test 3), with

the observed one we use the quantile–quantile (qq) plot

and its corresponding sampling uncertainty. The map-

ping of any given quantile probability q, 0 # q # 1, to

the corresponding physical variable x is given by F21(x),

where F(x) is the empirical cumulative distribution

function of x; the confidence limits in the qq plot are

therefore given by the confidence band about F, which is

derived from the Kolmogorov–Smirnov (KS) test. Using

a significance level of a, as specified below, this uncer-

tainty is indicated in all of the following qq plots as a gray

(1 2 a) confidence band about the diagonal. According to

the KS test, a simulated distribution is regarded as signif-

icantly different from observations if only one simulated

quantile lies outside the confidence band; this is simply

a consequence of the KS statistics, which is based on the

maximum difference (k k‘ norm) between two cumulative

distribution functions (CDFs). A method/index pair

passes the test if the downscaled distribution is not sig-

nificantly different from that observed. We have used

a general significance level of a 5 0.01, leading to fairly

wide confidence bands. The distribution test is applied to

downscaled reanalyses as well as downscaled simulations

of present climate driven by observed radiative forcings,

that is, greenhouse gases, aerosols, solar, and volcanic ash

[twentieth-century GCM simulations (20C3M; cf. http://

www.ipcc-data.org/ar4/scenario-20C3M.html)].

The testing is complicated by the stochastic com-

ponents of ASD, QRNN, and TG, where any two re-

alizations can differ considerably. We need to test,

therefore, whether the underlying simulation population

differs significantly from observations when sampled ac-

cordingly. In the case of the distributions (test 2 and 3)

this is straightforward: a method/index pair passes if the

rate of rejected realizations is at most a. For the sensi-

tivity testing (test 1) the situation is more involved. While

the sampling uncertainty for the distribution of a time

series is estimated quite universally using the KS theory,

no corresponding concept exists for the time series itself.

We have used the following criterion for test 1: a method/

index pair passes if 50% of the realizations pass the single

test. This would be equivalent to requiring the median of

all realized correlations to be significant, except if the

corresponding significance level depends on the time se-

ries itself (which it does). For all stochastic methods

TABLE 5. Summary table for test 2.

Index ASD BCSD QRNN TG XDS

CDD C1C2M2 T1

CSDI

CWD C2T1 M1

DTR C1 M3 C1C2

FD C2M3T1 C2M3T1 T1 C1C2M3T1

GSL C1 C2M2M3T1 C2M2M3T1 C1C2M2M3T1

ID M1 C1M2M3T1 C1M2T1 M2T1 M1M2M3T1

PRCPTOT T1 M1T1 C1 C1C2M1M3T1

R10 C2T1 M1M3T1 C1 M3 C1C2T1

R20 M2 C1 C1M2M3

R95p C1C2M1M2T1 C1C2 C1C2T1 C1C2M2M3

R99p C1M2M3 C1C2M3

R25 T1 C1 C1 C2

RX1day C1M1M2T1 C1C2M2

RX5day M2T1 C1C2M2

SDII T1 M1M2 T1 C2 C2

SU C1 C1C2M2 C1 C1M2 C1M2

TN10p C2M2M3T1 C1C2M1M2T1 C1C2M2T1 C1C2M1M2T1 C1C2M1M2M3T1

TN90p C2T1 C1C2M2M3T1 C1C2M2M3T1 C1M3T1 C1C2M2M3T1

TNn T1 C1C2M1M2T1 C1C2T1 C2 C1M1M2M3T1

TNx M1 C1C2M1M2 C1 M1

TR C1C2M1M3T1 C1C2M1M3T1 C1C2M1M3T1 C1C2M1M3T1 C1C2M1M3

TX10p M2M3T1 C1C2M2M3T1 C2M2M3T1 C1M3T1 C1C2M1M2M3T1

TX90p C1C2M2M3 C1C2M2M3T1 C1C2M2M3T1 C1C2M2M3T1 C1C2M2M3T1

TXn C1C2 C1C2M1M2M3T1 C1C2M3T1 C1C2M2M3T1

TXx C1 C1M2T1 C1C2 C1C2

WSDI

Total No. 31 85 51 34 84
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(ASD, QRNN, TG) we have used 20 realizations. Note

that BCSD also contains a stochastic component in the

daily disaggregation scheme; but because that is largely

‘‘tamed’’ by constraining it to prescribed monthly means,

we treat BCSD as a deterministic method.

Estimating a distribution, as in tests 2 and 3, follows

standard statistical practice of data sampling and calcu-

lating summary measures, and thus comes with a natural

uncertainty as embodied by the Kolmogorov–Smirnov

test. Accordingly, the notion of a 99% confidence in-

terval has a solid statistical foundation, and in our study

it provides the criterion for the passing of tests 2 and

3. For a time series there is no equivalent. For exam-

ple, observational records do not come naturally with

a confidence interval, and no corresponding test exists

for the similarity to that record. As a workaround,

summary measures for the similarity of any two series

are usually employed, such as correlation or coher-

ence. The dependence on a second argument, however,

greatly confounds the significance assessments of these

measures. All one can do is estimate their level of sig-

nificance ‘‘from below,’’ by calculating them from

random time series (‘‘noise’’). The passing of test 1,

accordingly, involves the rejection of the null

hypothesis of noise. Note that the character of this

noise (color or memory) is often quite controversial.

4. Focus regions and data

As evident from Fig. 1, the study area of British Co-

lumbia offers a varied landscape where several climate

zones exist. To reflect a broad range of these zones in the

testing, we selected the

d coastal zone (C) with two stations, where climate is

maritime and mild, and the seasonality is relatively

weak for temperature, but strong for precipitation;
d southern interior mountains (M) with three stations,

representing an alpine climate with strong topographic

gradients for temperature and precipitation; and
d taiga plains (T) with one station, which is character-

ized with long sub-Arctic winters and cloudy and

unstable weather in summer.

For each of these regions we selected a maximum of

three climate stations that

d record daily values of precipitation P and minimum

and maximum temperature Tn (5TN) and Tx (5TX),

respectively,

TABLE 6. Summary table for test 3.

Index ASD BCSD QRNN TG XDS

CDD C1C2M1M2T1 C1C2M1M2M3

CSDI

CWD C2M2 M1M3T1

DTR C2 C1 C2

FD T1 T1 T1

GSL C1M3 C1M2T1 C2M3

ID M2T1 T1 T1

PRCPTOT C1C2M1T1 M3 C2 C1C2T1

R10 C1C2T1 C1C2M3

R20 C1C2M2T1 C2 C1C2

R95p C2 C1C2M1M2T1 C1C2 C2 C1C2M2T1

R99p C1M3 C2M3

R25 C1C2T1 C2 C1C2

RX1day C1M2T1 C1C2M2T1

RX5day C2M2 C1M1M2 C1 C1C2T1

SDII C1M2T1 C1C2

SU C1C2T1 C1C2M2T1 T1 C1C2T1 C1C2M2

TN10p C2M2T1 C1C2M1M2T1 C2M2T1 C2M2T1 C1C2M1M2T1

TN90p C1C2M2M3T1 C1C2M3T1 M3T1 C2M3T1 C1C2M2M3T1

TNn C1M3 M1 C1M1M2M3

TNx C1C2M2 C1C2M1M2M3 C1 C1

TR C1C2M1M3T1 C1C2M1M3T1 C1C2M1M3T1 C1C2M1M3T1 C1C2M1M3T1

TX10p M1 C1C2M1M2M3 M1M2T1 M2 C2M1M2T1

TX90p C1C2M2M3T1 C1C2M2M3T1 C1C2M2M3T1 C1C2M2M3T1 C2M3T1

TXn C1C2M1 M1M2M3

TXx C1 C1C2M2T1 C1 M2T1

WSDI

Total No. 34 84 25 27 73
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d have a fairly complete data coverage for 1971–2010, and
d represent the altitudinal profile of the region.

The selected regions and stations are tabulated in

Table 3.

We reserved the two decades from 1991 to 2010 for

validation; this leaves sufficient daily data (depending

on station, but at least two decades) for the calibration.

It should be noted, however, that a sample size of 20

annual values from the validation is bound to limit

the statistical power of each of the tests. From among

several possible choices of reanalysis products, such

as NCEP–National Center for Atmospheric Research

(NCAR) Global Reanalysis 1 (GR-1) and NCEP/

Department of Energy Global Reanalysis 2 (GR-2),

40-yr European Centre for Medium-Range Weather

Forecasts (ECMWF) Re-Analysis (ERA-40), or ECMWF

Interim Reanalysis (ERA-Interim; cf. http://reanalyses.

org/atmosphere/overview-current-reanalyses), GR-1 is

the only one with sufficient pre-1991 data to calibrate

the methods. As GCM data we used the 20C3M simu-

lation (for pre-2001 values) followed by the A2 sce-

nario of the ECHAM5/Max Planck Institute Ocean

Model (MPI-OM) (EH5OM) run 1, as described online

(http://dx.doi.org/10.1594/WDCC/EH5-T63L31_OM-

GR1.5L40_20C_1_6H and http://dx.doi.org/10.1594/

WDCC/EH5-T63L31_OM-GR1.5L40_A2_1_6H). At the

time of writing, no other GCM was available to us that

had sufficient predictor data for all methods. The origi-

nal resolution is 2.58 3 2.58 for GR-1 (1.8758 3 1.8758 for

precipitation), and 1.8758 3 1.98 for EH5OM. For the

downscaling, all fields are regridded to the finest com-

mon resolution.

This study deals with present climate throughout,

either observed/analyzed or simulated from green-

house gas concentrations that are prescribed accord-

ing to observed or projected (up to 2010) values (IPCC

2007).

5. Results

All ClimDEX indices are based on annual values

(either originally or aggregated by us from monthly

values). For the stochastic methods we always show the

first realization in the time series plots. All single test

results can be inspected from Table 4 (test 1), Table 5

(test 2), and Table 6 (test 3), and the combined results

are found in Table 7. We present the full tables mainly

TABLE 7. Summary table for test 1, test 2, and test 3 combined.

Index ASD BCSD QRNN TG XDS

CDD

CSDI

CWD

DTR

FD T1 T1 T1

GSL M3

ID M2 T1 T1

PRCPTOT C1C2T1

R10 C2

R20 C1

R95p C2

R99p

R25 C2

RX1day C1

RX5day M2

SDII M2

SU C1 C1C2M2 C1 C1M2

TN10p C2M2T1 M1M2T1 C2M2T1 M2T1 C1C2M1M2T1

TN90p C2 C1M3 M3T1 M3 C1M2M3

TNn C1M1M3

TNx

TR

TX10p M2 M2T1 C2M1M2

TX90p C1C2M2M3 M2M3T1 C1C2M2M3T1 M3 C2M3

TXn M2M3

TXx

WSDI

Total No. 9 16 13 6 31
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for reasons of completeness, because their content is

easily overwhelming and, apart from a few obvious

features, difficult to assess. We attempt to interpret

them along the three marginals of region (section 5a),

ClimDEX (section 5b), and method (section 5c).

Among the obvious general features is the better per-

formance of most of the temperature-based methods as

compared to precipitation. Moreover, indices derived

from percentiles are better simulated as well. It is

noteworthy that BCSD outperforms the other methods

for the distribution tests, but shows poor performance

for the sensitivity test 1. The combined test is passed by

much less method–index pairs, with XDS showing the

best results.

a. Regions

1) COAST

The time series of four typical indices for the coastal

region (C) are shown in Fig. 2. For PRCPTOT, interannual

FIG. 2. (a) NCEP-downscaled vs observed annual values of PRCPTOT and R95p for the

coastal region (Victoria, 1018620). For the stochastic methods (ASD, QRNN, and TG) we

show one realization. (b) Same as (a), but for TN10p and TX90p.

15 JUNE 2012 B Ü R G E R E T A L . 4377



variations are traced quite well in most methods, except

perhaps for the persistent positive anomaly of the late

1990s whose full scale is only reflected by the XDS. For the

verification period, TG appears to be least sensitive to cli-

matic anomalies. A good example of this kind of climate

sensitivity is the high-rainfall periods followed by sharp

declines in the early 1980s and late 1990s. Peak precip-

itation years, as measured by very wet days (R95p), such as

1999 and 2003, are less well represented by the methods

(1999 by XDS and 2003 by TG); note the strong over-

estimation of the year 2006 by XDS. For the temperature

values, the apparent trend for both cool nights (TN10p,

negative) and warm nights (TX90p, positive) is captured by

all methods. TG and partly BCSD persistently over-

estimate TN10p, while XDS and QRNN are very similar

and closer overall; ASD shows an underestimation in the

early part. Single anomalous years are well represented in

most of the methods, such as the ‘‘cold’’ anomalies in 1985,

1996, and 2008. For TX90p, the most obvious feature is the

underestimation of BCSD in the early part of the series.

The two warm years of 1992 and 1995 are well captured by

all methods except BCSD (these years are relatively warm

but not warm enough) and TG, while the extended

warming observed throughout most of the 2000s is reflected

in all methods.

The corresponding qq plot, based on the verification

period, of four typical ClimDEX indices is depicted

in Fig. 3. For the precipitation indices PRCPTOT and

very wet days (R95p), only ASD, QRNN, and XDS are

within the confidence band; note, however, that the first

two are stochastic, and together with the other reali-

zations might still fail the corresponding test 2 (and

infact do so, cf. Fig. 6). Note the widening of the confi-

dence band for the extreme quantiles, which reflects the

larger uncertainty in estimating the likelihood of the

corresponding events. For the two temperature indices

TN10p and TX90p all methods are well within the

confidence band and pass the test. The corresponding

results for EH5OM/20C3M are shown in Fig. 4 and are

overall similar. The only difference is an upward shift

of the precipitation values across all methods; for ASD,

this leads to a strong positive PRCPTOP bias and a

failure of the corresponding test.

The results of test 1, that is, the annual correlation to

observations from the verification period from 1991 to

2010, are shown in Fig. 5 for Victoria. There is a no-

ticeable drop in performance for all precipitation de-

rived values. Overall, XDS and QRNN perform best,

with high scores for most temperature and many pre-

cipitation indices. Note that a corresponding analysis for

FIG. 3. The qq plot of NCEP-downscaled vs observed annual ClimDEX values for Victoria (1018620), based on data

from 1991 to 2010.
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the longer period from 1971 to 2010 (not shown) reveals

very similar results for most indices, indicative that

overfitting is generally unlikely.

The passing of the distribution tests is shown in Fig. 6.

Note that the tropical nights (TR), TN10p, and TX90p

tests are passed by all methods. Additionally, BCSD

passes for the most temperature- related indices and

XDS for most precipitation-related indices. QRNN

shows comparable performance for NCEP but drops

sharply for the GCM.

2) MOUNTAINS

We show as an example the annual values for the

maximum 5-day precipitation amount (RX5day) and

simple daily intensity index (SDII) in Fig. 7, from the

Mt. Fidelity station at 1875 m. XDS persistently over-

estimates RX5day, especially in the first half-period;

QRNN, on the other hand, exhibits very little inter-

annual variability. Both methods also overestimate

SDII. With a few exceptions, the sensitivity to large-

scale anomalies is weak, the exceptions being the year

1990 where all methods show positive anomalies of

SDII. Note that none of the series shows a marked trend.

Figure 8 summarizes the results for test 1 for the near-

mountaintop station at Mt. Fidelity (117CA90). As for

the coastal region, XDS and QRNN have the largest

number of significant correlations, which for XDS fre-

quently approaches 0.9. The temperature-related in-

dices pass the test for most methods.

3) TAIGA

For the single taiga station at Fort Nelson we show as

an example annual values of minimum Tn (TNn) and

FIG. 4. As in Fig. 3, but for downscaling EH5OM/20C3M.

FIG. 5. Results of test 1 for the coastal region (Victoria). We

show significantly nonzero correlations between NCEP-downscaled

and observed indices. For the stochastic methods (ASD, QRNN, and

TG), the average over all realizations is shown.
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maximum Tx (TXx) in Fig. 9. It appears that for TNn,

BCSD is least sensitive, especially in the early part. The

cold anomalies of 1996 and 2008 are well reproduced by

all methods; the persistent warming of the late 1980s, as

well as the isolated warm year 1993, is visible in all

simulations except BCSD. For TXx, XDS, and partly

ASD, show a marked positive bias; sensitivity to in-

terannual variations is weak in all methods.

Regarding actual anomalies for test 1, performance is

lower than in the mountain region, as shown in Fig. 10.

Again XDS and QRNN perform best, with XDS having

some advantages for P-derived values and QRNN for

those derived from Tx. The temporally more complicated

indices [consecutive dry days (CDD), cold spell duration

(CSDI), consecutive wet days (CWD), and diurnal T range

(DTR)] do not pass for any of the methods.

b. ClimDEX

Calculating the rate of passed tests relative to all

methods and regions reveals the average results for each

individual ClimDEX index. Figures 11a,b show for the

single and combined tests that temperature-related in-

dices are more easily downscaled (by our five methods)

than those coming from precipitation (;50% for TX90p

versus ;5% for R95p for the combined tests), which of

course simply reflects that the corresponding raw daily

series have a closer relation to the large-scale atmo-

sphere. Note the symmetry between TN10p and TN90p

on the one hand and TX90p and TX10p on the other.

Note that based on the combined tests, none of our

methods is skillful for either some indices of very ex-

treme events (R99p and TXx), or for indices repre-

senting a more complicated temporal pattern, such as

those based on consecutive days.

c. Methods

Figure 12a shows the rate of passed single tests across

all indices and regions, the latter being weighted equally

(to account for different station count). It is obvious that

XDS shows the best performance, followed by, in that

order, BCSD, QRNN, ASD, and TG. XDS is particu-

larly good for the coastal region with about 60% of all

tests passed. With about 50% of tests passed, BCSD

shows best performance at the taiga station. The com-

bined tests (cf. Fig. 12b) reveal stronger differences be-

tween regions and methods. XDS is best again, followed

FIG. 6. Results of (left) test 2 (from NCEP) and (right) test 3 (from GCM) for the coastal region (Victoria).
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by QRNN and BCSD, which show comparable perfor-

mance, and ASD and TG. For the coast, XDS sticks out

with about 25% of passed tests as compared to 5%–10%

for the others. Interestingly, while performance for XDS

drops for the other regions, it improves for the other

methods, especially for BCSD and QRNN, with the

latter reaching almost 20% of passed tests for the taiga.

6. Discussion

We have tested five different downscaling methods

for the complex area of British Columbia. The methods

cover a wide range of statistical downscaling, from

a quantile mapping of monthly gridpoint data (BCSD),

to quantile regressions using neural nets (QRNN), to

ordinary, (automated) stepwise regression with variance

adjustment (ASD) to ‘‘expanded’’ regression with full

covariance preservation (XDS), and to a weather-type

approach with stochastic resampling of within-type

weather (TG). It was our goal to test the methods as they

were used previously, including the selection of pre-

dictors. In some cases, however, the methods were al-

tered in order to account for obvious shortcomings.

For example, ASD needed extra corrections for cases

when Tn . Tx, XDS employed a multivariate bias cor-

rection of the predictor fields, and TG included a within-

type trend correction.

This setting leads to an average of roughly 10% (30%)

of the better methods passing the combined (single)

tests. As is shown, downscaling temperature extremes,

whether on the cold or the hot end, can be done with

moderate reliability for all test sites, regardless of method,

and the most appropriate index to do so is TN10p

(;60% passed tests) for monitoring cold and TX90p

(;50%) for hot extremes. Both measure relatively

moderate extremes, which should also leave enough

room for parameter estimation and reduce the un-

certainty for the downscaling of climate scenarios. For

downscaling precipitation extremes no corresponding

index exists that could be used regardless of region and

method. To use RX5day, for example, one would need

to inspect and find that it can only be downscaled re-

liably for one mountain station by using BCSD. The

temporally more complex indices (CDD, CSDI, and

FIG. 7. The RX5day and SDII indices for the mountainous region (Mt. Fidelity).

FIG. 8. As in Fig. 5, but for the mountainous region (Mt. Fidelity).
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CWD), by passing none of the combined tests, cannot

be downscaled by any of the methods at any test site

with enough confidence.

With respect to regions one would expect a degrada-

tion of performance with increasing topographic dis-

turbance, so that the best performance is achieved at

coastal or mountaintop stations. This is true, however,

only for XDS (and partly ASD), as evident from Figs. 8

and 12b. The opposite is true for QRNN, which actually

follows from the fact that performance at the coast is

poor for all methods except XDS. We have no expla-

nation for this. Apart from that, improved performance

for the taiga region is noticeable for TG and, in partic-

ular, QRNN. This is mainly based on the skill in tem-

perature downscaling, as exemplified by Fig. 10.

Choosing ClimDEX for the tests had the folloing two

advantages: a) by measuring ‘‘moderate’’ extremes they

represent important and relevant tendencies of the cli-

mate system, which are at the same time statistically

manageable; moreover, passing ClimDEX is a pre-

requisite for testing the far tail of a distribution that

corresponds to singularly catastrophic events; b) be-

cause the statistical methods are trained on (daily)

temperature and precipitation and not on ClimDEX

itself, and most indices are a complicated composition of

these base variables, performance of ClimDEX is more

independent from the calibration time period and less

prone to artificial skill from overfitting. This was verified

in additional tests (not shown), which showed similar

results with calibration data included.

Why do most methods perform so poorly at the coast?

Comparing Figs. 12a,b for the coast, one sees a dramatic

drop from the single to the combined testing, for at least

BCSD and QRNN. For BCSD, Tables 5 and 6 show that

this is mainly due to BCSD performing well for the

distribution tests (test 2 and 3) and underperforming for

the sensitivity test (test 1), and in particular for the

temperature indices. This points to the fact that BCSD

simulates Tn and Tx as a mere proxy, based on daily

mean temperature and climatological diurnal tempera-

ture range. The quantile mapping may adjust for de-

ficiencies in the distribution of daily mean temperature,

but not for the actual minima and maxima. Work is

under way to implement the direct downscaling of Tn

FIG. 9. The TNn and TXx index for the taiga region (Fort Nelson).

FIG. 10. As in Fig. 5, but for the taiga region (Fort Nelson).
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and Tx into BCSD. QRNN, on the other hand, does

a relatively good job for the NCEP-based tests 1 and 2,

but does poorly in the GCM downscaling test 3. This

may in part be due to its use of a relatively simple linear

bias correction for GCM predictors as compared to the

probit and quantile mapping transformations of XDS

and BCSD. But as indicated, this is mere speculation

and has, moreover, no particular coastal characteristic.

It is not easy to get a handle on the different perfor-

mance statistics of the methods. ASD and XDS, for

example, are both regression-based but show rather

different skill, with XDS passing about 2.5 times as many

tests as ASD for each region. We have run a couple of

sensitivity experiments by exchanging certain modeling

components, including the set of predictors, so that ASD

operates on the larger predictor set of XDS, but we

could not bring the methods into any better agreement.

There are more advanced forms of ASD, making use, for

example, of alternative predictor selection methods

(e.g., partial correlation) and regression schemes (e.g.,

ridge regression), but based on the above experience we

doubt that this is the root cause of the differences. It

seems the main methodological difference, at least for

precipitation, lies in the use of different predictands:

whereas ASD predicts the probability of precipitation

and simulates precipitation stochastically, XDS predicts

precipitation directly.

All methods that are founded on a transfer function

with parameters estimated from some principle of error

minimization, such as regression or neural networks,

have to face the fact that the simulated variability is

reduced relative to observations. There are two ways to

overcome this deficit—a stochastic way and a deter-

ministic way. The former creates the missing variability

purely stochastically by invoking specially calibrated

statistical distributions, such as Gamma or Weibull. The

latter does it by incorporating this requirement directly

into the transfer function definition itself. For example,

any quantile mapping approach that employs the ‘‘em-

pirical transformation’’ of Panofsky and Brier (1958),

such as the bias correction part of BCSD, is of this type;

XDS does it by imposing an extra constraint on the error

minimization; and for the analog method (Zorita and

von Storch 1999) an entire list of candidate global and

local fields is built into the transfer function (which

therefore becomes very complicated).

The deterministic approach, specifically XDS and its

simpler cousin ‘‘inflation,’’ has been denounced, on the

FIG. 11. (a) For each index, rate of single tests passed across regions and methods. Regions are

weighted equally. (b) As in (a), but for the combined tests.

15 JUNE 2012 B Ü R G E R E T A L . 4383



other hand, by von Storch (1999) as being inappropriate

for downscaling in general because all variability is in-

herited from the larger scales. He advocates ‘‘random-

ization’’ instead, where stochastic noise is added to the

regression model. This was briefly discussed previously

in Bürger and Chen (2005), and here we also provide

a short appendix where the main statistical characteris-

tics of both methods are illustrated, including a simple

example. We stress that any variance adjustment,

whether it is stochastic or deterministic, is in conflict with

the (unconstrained) regression approach and will in-

evitably lead to a larger model error, as exemplified in

the appendix. Much of the confusion, it seems, is caused

by the notion of variability, which ought to be taken as

a climatic amplitude measure and not, as von Storch

(1999) does, in the sense of individual fluctuations and

the related concept of explained variance. Inflation does

not aim to explain any variations that were left un-

explained by the regression. On the contrary, as shown

in the appendix (and as obvious from the optimality of

FIG. 12. (a) Rate of single tests passed for all regions and methods. (b) As in (a), but for

combined tests.
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regression), any posterior variance adjustment explains

less variance than regression; this is simply the price for

preserving variance. And the regression model degrades

quickly when variance is adjusted. If predictor–pre-

dictand correlations fall below ;0.7, then the explained

variance of the randomization model starts to vanish

(becomes negative); for inflation this happens only for

values below ;0.5. However, with no variance ex-

plained from the large scales (equivalent to forecasting

climatology) such models are not any better than the

most basic weather generators. This should be borne in

mind when applying variance adjustment techniques to

future scenarios, and it is also the main reason why in

test 1 we test the sensitivity to actual climate anomalies.

Finally, if XDS or any other deterministic method was

inappropriate for downscaling this would likely have

been revealed in our tests.

Thus, should the stochastic component be re-

sponsible for some of the reduced skill that we see for

ASD, QRNN, and TG? On top of that, and related to it,

recall that to pass the distribution tests only the small

fraction of a 5 1% of all realizations to fail the test

were allowed. A slight misrepresentation of the sto-

chastic component, hence, may easily lead to such

a failure. The stochasticity may therefore seem some-

what unfair as compared to the deterministic methods

BCSD and XDS. It is, however, just the flip side of the

greater chance of a realization passing a test when in

fact the method should not.

Of all methods BCSD uses the least large-scale in-

formation and, at least based on the single tests (Fig.

12a), performs comparatively well. Given the ‘‘cheap’’

input it is quite versatile and can be used to generate

large ensembles of downscaled scenarios. Compared to

that, all other methods require input that many of the

GCMs do not offer (such as daily upper-level fields).

BCSD can be improved to genuinely model Tn and Tx

and can be expected to pass more of the temperature

and, hence, the combined tests. Whether this new form

compares favorably to the more expensive methods

needs to be seen.

One would think that to do downscaling work in one

of our study regions simply requires inspecting Tables 4–

7, depending on the application, and picking for each

index of interest one of the passing methods. However,

despite the strict testing setup all results still depend on

the fixed framework in which they were derived, most

notably the use of GR-1 for the reanalysis fields [which is

now superseded by GR-2 (cf. Kanamitsu et al. 2002)]

and EH5OM run 1 for the GCM. Whether the results

are robust against the use of alternate GCMs is un-

known. It is in fact doubtful whether they persist for the

much more abundant GCMs of lower resolution.
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APPENDIX A

Inflation versus Randomization

In the simplest of all cases, the predictor variable x

and the predictand variable y are related as follows:

y 5 xr 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 2 r2

p
«. (A1)

We assume without loss of generality that x, y, and «

(which represents the unresolved error) are zero mean

Gaussian and that x and « have unit variance and are

uncorrelated. The correlation between x and y then

simply equals r. If one observes a sample of realizations

of x and y one can regress y on x (RGR), which then

leads to the well-known regression coefficient a 5 xny

and which approaches r with increasing sample size. The

variance of the regression-simulated predictand

ŷ 5 xa is, accordingly, a2 (in the limit r2), so that 1 2 a2

measures the amount of variance unexplained by the

linear regression.

To adjust the missing variance two methods are in use,

inflation (IFL) and randomization (RND)

IFL: ŷI 5 ŷsy/sŷ

RND: ŷR 5 ŷ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1 2 a2)

q
h, (A2)

where h denotes another N(0, 1) process uncorrelated

to ŷ. From the definitions (A2) the main simulation

characteristics such as variance, correlation to observa-

tions (r), and explained variance (EV) are straightfor-

ward (noting that generally EV 5 2r 2 1 if observed and

simulated variance both equal 1). Along with an exam-

ple of two time series of length 1000 with r 5 0.6, they

are shown in Table A1.

The first row expresses that variance is in fact adjusted

by both methods; the second row means that local cor-

relation is preserved by IFL but is degraded by RND in

proportion to r; in terms of simulation error, or equiv-

alently EV (third row), RGR is optimal followed by IFL

followed by RND. IFL has positive EV values for r . 0.5

and RND for r .
ffiffiffiffiffiffiffi
1/2
p

; 0:7. In real world cases when
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precipitation is the predictand, r is usually in the range of

0.4–0.7. The table was produced from Octave/Matlab

code (available online at http://xds.googlecode.com/git/

ifl_rnd.m).
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