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Introduction & objectives

Ensemble forecasts for extreme events: can be
biased and under/over-dispersed compared to obs.

Statistical post-processing: correcting
for systematic errors and offering better information
about forecast uncertainty.
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Figure: Biased forecast of 6-hourly
maximum wind gusts (ECMWEF-IFS ENS)
and the observation at IUmuiden.



IntrOdUCtion & ObjeCtiveS Inputs: Raw ensemble (biased)

Ensemble forecasts for extreme events: can be
biased and under/over-dispersed compared to obs.

-y . . X1 <81 X1 281
Statistical post-processing: correcting

for systematic errors and offering better information
about forecast uncertainty.

Machine Learning: Forest-based methods X5 < 59 X, < 55
o use an ensemble of decision trees to adapt the X;> s
post-processing  depending on  covariates. X1 2 83

o post-process bulk of the data well... and

extremes?
Outputs: Post-processed forecast



Forest-based methods

Three main methods... with different extrapolation capability!
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Generalized Regression
Forests (GRF)

Predict collection of observed
quantiles.
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Forest-based methods

Three main methods... with different extrapolation capability!

Generalized Regression Distributional Regression
Forests (GRF) Forests (DRF)

Predict collection of observed
quantiles.

No extrapolation.
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Predict the parameters of a
probability distribution.
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Density

Forest-based methods

Three main methods... with different extrapolation capability!

Generalized Regression Distributional Regression MOS Random Forests
Forests (GRF) Forests (DRF) (MOS-RF)

Predict collection of observed Predict the parameters of a Predict the parameters of a MOS
quantiles. probability distribution. model.
No extrapolation. Limited extrapolation. Extrapolation possible.
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Density

Forest-based methods

Three main methods... with different extrapolation capability!

Generalized Regression Distributional Regression MOS Random Forests
Forests (GRF) Forests (DRF) (MOS-RF)

Predict collection of observed Predict the parameters of a Predict the parameters of a MOS
quantiles. probability distribution. model.
No extrapolation. Limited extrapolation. Extrapolation possible.
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... but assume one MOS model: suitable for wind gust extremes?



Adding more flexibility to better model extremes

MOS-RF method: Adapt MOS model
to weather situations.

MOS model

Yy NNO(:Uﬁ 02)

with 1= fo + f1 x 11
and log(o) = o X 1

60751770

Inputs: Raw ensemble (biased)

Xy < V\Xl 5 55

Bo, B1, Yo Bo, B1, Yo
X2 > 82 X5 < 89 X, < s
X4 > 83
Bo, B1,Y0 | | Bo,B1isvo | | Bos Br,v0 | | Bo, Bisvo

Outputs: Adjusted distribution
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Adding more flexibility to better model extremes

MOS-RF method: Adapt MOS model
to weather situations.

“Regime-switching” approach:

- Fit a base MOS-RF model.

MOS model

Yy~ NO(:U’ 02)

with 1= fo + f1 x 11
and log(o) = o X 1

- Modify the MOS model for terminal nodes
associated with high wind gust forecasts:

Bo, B1,70

Inputs: Raw ensemble (biased)

Xy < V\Xl 5 55

Bo, B1, Yo Bo, B1, Yo
X > 89 X5 < 89 X, < ss
X4 > S3
I
Modified Modified
MOS Bo, B1,v0 | | Bo, B0 MOS

N\
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Regime-switching when wind gust
forecast is high (median ensemble
mean above a threshold)




Adding more flexibility to better model extremes

MOS-RF method: Adapt MOS model
to weather situations.

“Regime-switching” approach:

- Fit a base MOS-RF model.

MOS model

Yy~ NO(:U’ 02)

with 1= fo + f1 x 11
and log(o) = o X 1

- Modify the MOS model for terminal nodes
associated with high wind gust forecasts:
- adding covariates related to extremes

Add cov.

yNNO(Na 02)
with g = 8o + 1 X 1 + B2 X T2
log(o) = o X x1

607 517’70

Inputs: Raw ensemble (biased)
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Adding more flexibility to better model extremes

MOS-RF method: Adapt MOS model
to weather situations.

“Regime-switching” approach:

- Fit a base MOS-RF model.

MOS model

Yy~ NO(:U’ 02)

with 1= fo + f1 x 11
and log(o) = o X 1

Inputs: Raw ensemble (biased)

607 517’70

- Modify the MOS model for terminal nodes
associated with high wind gust forecasts:
- adding covariates related to extremes
- using other statistical distributions

Truncated GEV

y ~ GEVo(u, 0,§)
with = Bo + 1 X x1
log(c) = o X x1
§ = do

Xy < V\Xl 5 55

Bo, B1,70 Bo, B1,70

Xo > 59 X, < 39 X, < s
X4>83
I

Modified Modified
MOS Bo, B1,v0 | | Bo, B0 MOS

Regime-switching when wind gust
forecast is high (median ensemble
mean above a threshold)



Adding more flexibility to better model extremes

MOS model

MOS-RF method: Adapt MOS model
to weather situations.

Yy~ NO(:U’ 02)

with 1= fo + f1 x 11
and log(o) = o X 1

Inputs: Raw ensemble (biased)

607 517’70

“Regime-switching” approach:

- Fit a base MOS-RF model.
- Modify the MOS model for terminal

nodes

associated with high wind gust forecasts:
- adding covariates related to extremes
- using other statistical distributions

- Both
Add cov. + Truncated GEV

Y r~ gSVO(/'La g, 5)
with = By + 1 X 1 4+ B2 X x2

log(o) = o X x1
£ =do

Xy < V\Xl 5 55

Bo, B1,70 Bo, B1,70

X2 > 82 X5 < 89 X, < s
X4>83
I

Modified Modified
MOS Bo, B1,v0 | | Bo, B0 MOS

Regime-switching when wind gust
forecast is high (median ensemble
mean above a threshold)



Adding more flexibility to better model extremes

MOS-RF method: Adapt MOS model
to weather situations.

“Regime-switching” approach:

- Fit a base MOS-RF model.

MOS model

Yy NNO(Mﬁ 02)

with pu = fo + 1 X a1

and log(o) = o X 1

- Modify the MOS model for terminal nodes
associated with high wind gust forecasts:
- adding covariates related to extremes
- using other statistical distributions

- Both

Advantage: Improve extremes while keeping initial

performances for non-extremes.

607ﬁ1770

Inputs: Raw ensemble (biased)

X1 <V\X1 > 51

Bo, B1, Yo Bo, B1, Yo
X2 > 82 X5 < 89 X, < s
X4 > S3
I
Modified Modified
MOS Bo, B1,v0 | | Bo, B0 MOS
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Regime-switching when wind gust
forecast is high (median ensemble
mean above a threshold)




Data and applications i

Data: 6-hourly maximum wind gusts 1
Model: ECMWEF-IFS ensemble data (51 members)
Reference: observations at KNMI stations (37).

over Netherlands during winter 2018-2022.

Number of covariates: 71.

Data splitting: train-validation (2018-2021), test (2022).
Lead time: 30h, initialisation time: 00 UTC.

Pooling of stations

MOS-RF versions: ‘ 5 6 7
- MOS-RF: base model with truncated Gaussian (cov: ensemble mean)



Data and applications i

Data: 6-hourly maximum wind gusts 1
Model: ECMWEF-IFS ensemble data (51 members)
Reference: observations at KNMI stations (37).

over Netherlands during winter 2018-2022.

Number of covariates: 71.

Data splitting: train-validation (2018-2021), test (2022).
Lead time: 30h, initialisation time: 00 UTC.

Pooling of stations

MOS-RF versions: * : : f
- MOS-RF: base model with truncated Gaussian (cov: ensemble mean)
- Reqgime-switching:

- to model location (90th percentile of wind gust ensemble).

- with truncated GEV.
- MOS-RF-AddCovGEV0 truncated GEV + additional cov. for location.



Regime-switching: finding the optimal threshold

Select best threshold on validation set:

e Mean CRPSS wrt MOS-RF on modified predictions.
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Figure: Mean CRPSS with respect to MOS-RF depending on the threshold.



Results for wind gust extremes

Comparison of MOS-RF versions with:
- GRF - - Raw forecasts

Metrics: twCRPS at stations for events above 21m/s (~97.5th obs. percentiles)



53.5

53.0

525

52.0

Results for wind gust extremes

Comparison of MOS-RF versions with:

- GRF -

- Raw forecasts

Metrics: twCRPS at stations for events above 21m/s (~97.5th obs. percentiles)

+ GRF (6)
4 DRF (6)
= Raw (13)

e MOS-RF versions (12)

Figure: Post-processing method that performs best at each station.

e MOS-RF versions
better along the
coast.

e Raw forecasts still
better for 1/3 of
stations.
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Figure: Post-processing method that performs best at each station.

- Raw forecasts

Metrics: twCRPS at stations for events above 21m/s (~97.5th obs. percentiles)

e MOS-RF versions
better along the
coast.

e Raw forecasts still
better for 1/3 of
stations.
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Results for wind gust extremes

Comparison of MOS-RF versions with:

- GRF - - Raw forecasts

Metrics: twCRPS at stations for events above 21m/s (~97.5th obs. percentiles)
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Figure: Post-processing method that performs best at each station.
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Results for wind gust extremes

Comparison of MOS-RF versions with:
- GRF - - Raw forecasts

Metrics: twCRPS at stations for events above 21m/s (~97.5th obs. percentiles)

® MOS-RF versions (12) . = o MOS-RF (3)

1+ GRF (6) 1 = MOS-RF-AddCov (4)
MOS-RF-GEV0 (3) =

* MOS-RF-AddCovGEVO0 (2) | ¢

e MOS-RF versions
better along the
coast.

53.5

53.0

e Raw forecasts still
better for 1/3 of
stations.

525

52.0

51.5

e Regime-switching

improves extremes
(wrt MOS-RF) for

) ’ ° ! ) ° ° ’ 9 out of 12 stations.
Figure: Post-processing method that performs best at each station.
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Results for global forecast performances

Comparison of MOS-RF versions with:
- GRF - - Raw forecasts

Metrics: CRPS at stations

v | ® MOS-RF versions (23)

8 7« GRF (12)

. Raw o) e Forest-based
methods improve

Raw forecasts

53.0
1
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e MOS-RF versions
generally better.
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Figure: Post-processing method that performs best at each station.
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Comparison of MOS-RF versions with:

- GRF - - Raw forecasts

Metrics: CRPS at stations
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® MOS-RF versions (23)
+ GRF (12)

» DRF (2) adl
= Raw (0)

® MOS-RF (12)
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4 MOS-RF-GEVO (4)
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Figure: Post-processing method that performs best at each station.

Forest-based
methods improve
Raw forecasts

MOS-RF versions
generally better.

Regime-switching
not always improves
CRPS wrt MOS-RF
(11 out of 23 stations)



Conclusions and Perspectives

e MOS-RF + “Regime-switching” approach to post-process wind gust extremes.
e Mixed results for extremes depending on:
o the stations
o metrics/intensity of extremes (not shown).
Sometimes difficult to beat Raw forecasts for extremes.
e ‘“Improving extremes comes at a cost” (Jakob Wessel's poster)
= but methods based on MOS-RF present the best results



Conclusions and Perspectives

e MOS-RF + “Regime-switching” approach to post-process wind gust extremes.
e Mixed results for extremes depending on:
o the stations
o metrics/intensity of extremes (not shown).
Sometimes difficult to beat Raw forecasts for extremes.
e ‘“Improving extremes comes at a cost” (Jakob Wessel's poster)
= but methods based on MOS-RF present the best results

e Further research is needed:
o How can we beat Raw for (very high) extremes?
m Fitting residuals instead of original target variable = better results?
m Considering other Machine Learning tools (e.g., neural networks)
o How can we better assess improvements to extremes?
o Differences of extremes between the training/test set: Stratified sampling?




Additional slides



Preliminary results for wind gust extremes

Comparison of MOS-RF versions with:
- GRF - - Raw forecasts

Metrics: CRPS at stations

v | ® MOS-RF versions (23) o | ® MOS-RF (12)
8 7 ¢« GRF (12) @ 7| = MOS-RF-AddCov (4)
4 DRF (2) @ 4 MOS-RF-GEVO (4)
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Figure: Post-processing method that performs best at each station.



Additional slides

Comparison with MOS-RF: twCRPS at stations for events above 21m/s (~97.5th obs. percentiles)
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© e MOS-RF-AddCov (16) @ 7 MOS-RF-GEVO (16) © 7 o MOS-RF-AddCovGEV0 (18)
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Figure: Post-processing method that performs best at each station.



Regime-switching: finding the optimal threshold

Select best threshold on validation set:
Observations for modified cases vs. threshold

e Mean CRPSS wrt MOS-RF on modified cases.
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Figure: Mean of obs. for modified cases wrt threshold. Figure: Mean CRPSS with respect to threshold.

e Higher threshold = forecast associated with higher obs.



MOS-RF: how does it work?

The MOS-RF method: Adapt MOS model to weather situations.

® Assume a MOS model

® Training steps:

... but assume one MOS model: suitable for wind gust extremes?

Estimate MOS coefficients at a parent node.

yr NO(IU7 02)

with u = By + 1 X 21

and log(o) = vp X o1

60751770

X1 <V\X1 > $

Select optimal covariate and split point to fit better

MOS models
Repeat.

Bo, B1, Yo Bo, B1, Yo
X9 > 59 Xy < 89 Xy < s3
X4 > 83
I
Bo, B1,Y0 | | Bo,B1isvo | | Bos Br,v0 | | Bo, Bisvo




Results for the post-processing of wind gust extremes

Reliability and sharpness diagrams for events above 21m/s
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Results for the post-processing of wind gust extremes

Comparison of with:
- GRF - - Raw forecasts

Metrics: twCRPS at stations for events above 21ml/s (~97.5th obs. percentiles)

MOS-RF versions (12)
+ GRF (6)
4 DRF (6)
= Raw (13)

« | ® MOS-RF (15)

% 7 = MOS-RF-AddCov (5)
4 MOS-RF-GEVO0 (6) =
+ MOS-RF-AddCovGEVO (11) |
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Figure: Post-processing method that performs best at each station.
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Results for the post-processing of wind gust extremes

Comparison of

- GRF

with:

- Raw forecasts

Metrics: Brier Score at stations for events above 21m/s (~97.5th obs. percentiles)

4 DRF (4)
= Raw (20)

MOS-RF versions (8)
7 * GRF (5)

53.5

53.0

52.5

52.0

51.5

51.0

Figure: Post-processing method that performs best at each station.

® MOS-RF (18)

1 = MOS-RF-AddCov (5)

4 MOS-RF-GEVO0 (5)
+ MOS-RF-AddCovGEVO0 (9)
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Raw forecasts
better for Brier
Scores
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Preliminary results for wind gust extremes

Comparison of MOS-RF versions with:

- GRF - - Raw forecasts

Metrics: Brier Score at stations for events above 21m/s (~97.5th obs. percentiles)

MOS-RF versions (8) o | ® MOS-RF (18)
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Figure: Post-processing method that performs best at each station.

Raw forecasts
better for Brier
Scores
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Results for the post-processing of wind gust extremes

Comparison of

- GRF

with:

MOS-RF versions (17)

7 ¢+ GRF (8)

4 DRF
= Raw
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Figure: Post-processing method that performs best at each station.

® MOS-RF (14)

7| = MOS-RF-AddCov (5)

4 MOS-RF-GEVO0 (8)

¢+ MOS-RF-AddCovGEVO (10) |«

- Raw forecasts

Metrics: twCRPS at stations for events above 23m/s (~99th obs. percentiles)
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Results for the post-processing of wind gust extremes

Comparison of with:
- GRF -

- Raw forecasts

Metrics: Brier Score at stations for events above 23m/s (~99th obs. percentiles)

7 + GRF (8)

MOS-RF versions (10) ® MOS-RF (17)
7| = MOS-RF-AddCov (7)
MOS-RF-GEVO (6)
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53.0

52.5

52.0

51.5

51.0

T T
4 5 6 7 4 5 6

Figure: Post-processing method that performs best at each station.

e Raw forecasts
better for Brier
Scores.

e Mixed results with
higher thresholds




