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Introduction & objectives

Figure: Biased forecast of 6-hourly 
maximum wind gusts (ECMWF-IFS ENS) 

and the observation at IJmuiden.
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about forecast uncertainty.
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● Ensemble forecasts for extreme events: can be 
biased and under/over-dispersed compared to obs.

● Statistical post-processing: correcting 
for systematic errors and offering better information 
about forecast uncertainty.

● Machine Learning: Forest-based methods
○ use an ensemble of decision trees to adapt the 

post-processing depending on covariates. 
(Schlosser et al., 2019, Taillardat et al., 2019)

○ post-process bulk of the data well… and 
extremes?
(Schulz et al., 2022)

Inputs: Raw ensemble (biased)

Outputs: Post-processed forecast
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… but assume one MOS model: suitable for wind gust extremes?

Muschinski et al., 2023
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Adding more flexibility to better model extremes
MOS-RF method: Adapt MOS model 
to weather situations.

“Regime-switching” approach: 

- Fit a base MOS-RF model.
- Modify the MOS model for terminal nodes 

associated with high wind gust forecasts:
- adding covariates related to extremes
- using other statistical distributions
- Both

Advantage: Improve extremes while keeping initial 
performances for non-extremes.

MOS model

Modified 
MOS

Modified 
MOS

Regime-switching when wind gust 
forecast is high (median ensemble 
mean above a threshold)

Inputs: Raw ensemble (biased)
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● Data: 6-hourly maximum wind gusts
● Model: ECMWF-IFS ensemble data (51 members) 
● Reference: observations at KNMI stations (37).
● over Netherlands during winter 2018-2022.
● Number of covariates: 71.
● Data splitting: train-validation (2018-2021), test (2022).
● Lead time: 30h, initialisation time: 00 UTC.
● Pooling of stations

MOS-RF versions:
- MOS-RF: base model with truncated Gaussian (cov: ensemble mean)
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Inputs: NWPs and observation data

LogisticGEV

splitting rule

Outputs: Parameters of predictive distributions

MOS-RF versions:
- MOS-RF: base model with truncated Gaussian (cov: ensemble mean)
- Regime-switching:

- MOS-RF-AddCov to model location (90th percentile of wind gust ensemble). 
- MOS-RF-GEV0 with truncated GEV.
- MOS-RF-AddCovGEV0 truncated GEV + additional cov. for location.

Data and applications 
● Data: 6-hourly maximum wind gusts
● Model: ECMWF-IFS ensemble data (51 members) 
● Reference: observations at KNMI stations (37).
● over Netherlands during winter 2018-2022.
● Number of covariates: 71.
● Data splitting: train-validation (2018-2021), test (2022).
● Lead time: 30h, initialisation time: 00 UTC.
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Regime-switching: finding the optimal threshold 
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Inputs: NWPs and observation data

LogisticGEV

splitting rule

Outputs: Parameters of predictive distributions

Select best threshold on validation set:

● Mean CRPSS wrt MOS-RF on modified predictions.   

Figure: Mean CRPSS with respect to MOS-RF depending on the threshold. 

no regime-switching 
⇒ no modif. of MOS-RF

improvement

deterioration
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- GRF (Taillardat et al., 2019) - DRF (Schlosser et al., 2019) - Raw forecasts

Metrics: twCRPS at stations for events above 21m/s (~97.5th obs. percentiles)

Figure: Post-processing method that performs best at each station. 

● MOS-RF versions 
better along the 
coast.

● Raw forecasts still 
better for 1/3 of 
stations.

● Regime-switching  
improves extremes 
(wrt MOS-RF) for
9 out of 12 stations.



Results for global forecast performances
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LogisticGEV

splitting rule

Outputs: Parameters of predictive distributions

Comparison of MOS-RF versions with: 
- GRF (Taillardat et al., 2019) - DRF (Schlosser et al., 2019) - Raw forecasts

Metrics: CRPS at stations

● Forest-based 
methods improve 
Raw forecasts

● MOS-RF versions 
generally better.

● Regime-switching  
not always improves 
CRPS wrt MOS-RF 
(11 out of 23 stations)

Figure: Post-processing method that performs best at each station. 

Results for global forecast performances



Conclusions and Perspectives

● MOS-RF + “Regime-switching” approach to post-process wind gust extremes.
● Mixed results for extremes depending on: 

○ the stations 
○ metrics/intensity of extremes (not shown).

● Sometimes difficult to beat Raw forecasts for extremes.
● “Improving extremes comes at a cost” (Jakob Wessel's poster)

⇒ but methods based on MOS-RF present the best results
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● MOS-RF + “Regime-switching” approach to post-process wind gust extremes.
● Mixed results for extremes depending on: 

○ the stations 
○ metrics/intensity of extremes (not shown).

● Sometimes difficult to beat Raw forecasts for extremes.
● “Improving extremes comes at a cost” (Jakob Wessel's poster)

⇒ but methods based on MOS-RF present the best results

● Further research is needed:
○ How can we beat Raw for (very high) extremes?

■ Fitting residuals instead of original target variable ⇒ better results?
■ Considering other Machine Learning tools (e.g., neural networks)

○ How can we better assess improvements to extremes?
○ Differences of extremes between the training/test set: Stratified sampling?
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Inputs: NWPs and observation data

LogisticGEV

splitting rule

Outputs: Parameters of predictive distributions

Select best threshold on validation set:

● Mean CRPSS wrt MOS-RF on modified cases. 

Figure: Mean CRPSS with respect to threshold. Figure: Mean of obs. for modified cases wrt threshold. 

● Higher threshold ⇒ forecast associated with higher obs.

Observations for modified cases vs. threshold

no regime-switching

Regime-switching: finding the optimal threshold 

no regime-switching



The MOS-RF method: Adapt MOS model to weather situations.

● Assume a MOS model

● Training steps:

■ Estimate MOS coefficients at a parent node.

■ Select optimal covariate and split point to fit better 

MOS models

■ Repeat.

MOS-RF: how does it work?

… but assume one MOS model: suitable for wind gust extremes?



Results for the post-processing of wind gust extremes
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Inputs: NWPs and observation data

LogisticGEV

splitting rule

Outputs: Parameters of predictive distributions

Reliability and sharpness diagrams for events above 21m/s

● MOS-RF-AddCov 
seems more reliable

● Sharpness better 
for Raw.
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Figure: Post-processing method that performs best at each station. 

● Raw forecasts 
better for Brier 
Scores.

● Mixed results with 
higher thresholds


