

Environment Canada's Climate science supporting adaptation in Canada

Regional Climate Services Workshop 2011 Victoria, B.C. Charles A. Lin Atmospheric Science & Technology Directorate November 22, 2011

The adaptation and climate services challenges for Environment Canada

- The premise: Climate services inform and assist users in adapting to both present day climate variability and medium to long term changes in climate.
- The challenge: Adaptation is inherently local and regional while EC has a national mandate, thus there needs to be a balance in working with stakeholders
- The relationships: Climate services are part of the "innovation chain" linking the <u>science</u> that comprises the basis for development of the services, the <u>service</u> that produces and provides the services, and the <u>users</u> of the services, who also provide feedback on what is currently available and what will be needed in future.
- **The role:** EC provides foundational science and data on past, present and future climates needed for adaptation.

Page 2 – November 22, 2011

Environment Environnement

Canada

EC's role: Providing knowledge and information

- What is changing? Why the need to adapt?
 - Observations and Analysis
- Why and how will it change?
 - Modelling and Analysis
- National scale climate services to users
- Science foundations for climate impacts studies, adaptation research and services.

Page 4 – November 22, 2011

Communicating the need for adaptation, getting the message out

Part of EC's climate service is providing the monitoring and data analysis that quantifies changing climate.

Canada, and the north, are warmer more than the global average.

Page 6 – November 22, 2011

Environnement

Canada

Environment Canada

Precipitation patterns are shifting across Canada Trends in annual rainfall / snow fall for 1950-2009

Rainfall has increased at most Candian locations over the past 60 years. Snowfall has increased in the north while a significant decrease was observed in the southwestern part of the country.

Upward and downward pointing triangles indicate positive and negative trends, respectively. Filled triangles correspond to trends significant at the 5% level. Percentage of normals are used. Mekis and Vincent, 2011

Environment Environnement Canada Canada Page 7 – November 22, 2011

Trends and Variability in Arctic Snow Cover - Sea Ice 1979–2011 Implications for water resources, transportation, etc.

Arctic September Sea Ice Extent: Snow Cover Extent Observations and Model Runs April 35 -May June 30 SCE (million km^2) Observations 25 ···· Mean of Models 20 Standard Deviation of Models 10.0 Sea Ice Extent (million square kilometers) 15 10 8.0 5 2003 2011 2007 1967 1971 1975 1979 1983 1987 1991 1995 1999 6.0 - Arctic warms - Precipitation (snowfall) increases - Snowpack depth increases 4.0 2011 - Winter shortens, earlier spring 2007 - Reduces areal extent of snow cover - Increases/intensifies the high 2.0 latitude water cycle - Potentially higher spring runoff 0.0-1950 1975 2000 2025 2050 Year

Page 8 - November 22, 2011

Sector specific: Working with federal departments Long-Term Trends for Agro-climatic Conditions

- B. Qian et al. J. of Applied Meteorology and Climatology, April 2010
- A set of agroclimatic indices representing Canadian climatic conditions for field crop production are analyzed for long-term trends during 1895–2007.
- A statistically significant increasing trend in the length of the growing season and in the associated available heat. The winter temperature is less damaging and the frost-free periods are longer. We also find trends in precipitation-related indices that indicate more availability of water, though the trend in the main agriculture region is less significant.

Trends in Consecutive 10-day Precipitation Total and Crop Heat Units, 1895 - 2007

Environment Environnement Canada Canada Page 9 – November 22, 2011

Tailored products for infrastructure codes & standards: climatologies and extremes analysis

- Updates for standards in 2010
 - 9 of 15 climatic elements for 680 locations in the NBCC updated and expanded (first for wind since 1958)
 - New NBCC information for tornado prone areas and frost penetration
 - Update of ice/wind loads for the CSA transmission line standard (first since 1998 ice storm)
- Two new CSA Guides for Adaptation to Climate Change for Infrastructure in Permafrost and Rainfall IDF information for storm and waste water management
- Updates of EC IDF tables and graphs and related documentation

Information on Current Conditions: Satellite Derived Snow Water Equivalent,

- Snow depth observing stations are sparse, necessitating satellite based solutions for snow monitoring.
- Multiple data sets (surface, satellite) are used to derive snow water equivalent (SW information over specific landscape region (prairies, boreal forest, tundra).
- Collaborative research with Finnish Meteorological Institute (FMI) and Europea Space Agency (GlobSnow project).
- Weekly SWE products for MSC, provinces and private sector support water management actions, and are used study response of ryosphere to climate variability and change.

Page 11 - November 22 2011

ILMATIETEEN LAITOS METEOROLOGISKA INSTITUTET NNISH METEOROLOGICAL INSTITUTE

Providing information on future climate: the Canadian Earth System Model, CanESM

Includes the atmosphere, oceans, land surface, and cryosphere. Couples the physical climate system with relevant biogeochemical cycles, and lets these components interact over time in the model.

CanESM2 Global Results

Contributing to IPCC 5th Assessment, new model, CanESM2, makes use of 'Representative Concentration Pathways' (RCPs).

Projected warming is amplified at high northern latitudes, and greater over land surfaces than oceans.

RCP2.6: 2090-2100 surface air temperature change

Seasonal to Inter-annual Prediction ...

- The Canadian global coupled climate models are being developed for both long-term climate change projection, as well as seasonal to inter-annual (even decadal) climate prediction.
- Work over the last 3 years has allowed the capability to initialize the full 3-D climate system using observations, and then make climate predictions for a season, a year, and even a decade.
- The model is currently undergoing extensive testing to evaluate its skill.

Decadal Predictions of global, annual mean surface temperature (°C)

Page 14 – November 22, 2011

Downscaling, Regional Models and Scenarios

- 'Downscaling' using regional models or statistical methods to regional and local scales.
- The finer the space and time scale of downscaled products, the greater the uncertainties. Ensemble scenario
 rpducts integrate the results of multiple models / methods to provide a more robust prediction with uncertainty
 estimates.

Annual Mean Temperature in INUVIK (A2 1961-2000)

Extremes

Information required for adaptation is not always readily available from global climate model simulations. Very often, it is necessary to post-process such simulations using regional climate models (RCMs) or statistical methods to provide finer details or to infer specific information

Detailed projections (at 50 km resolution) of how the highest temperatures on the hottest day over 20-year may increase (in degree C) by middle of the 21st century. The 10-90% uncertainty range provides additional important information for planning adaptive responses to potential future extremes. These results were obtained by using a combination of RCMs and statistical methods (Li, Zhang, Zwiers, 2011 in preparation).

Page 16 - November 22, 2011

Environment Canada "climate services"

- Providing national scale information or "climate services" which go directly and indirectly to users to support impact studies and adaptation research.
- Homogenized climate datasets, methodologies: <u>www.ec.gc.ca/dccha-ahccd</u>
- Global and regional climate model data: <u>www.cccma.ec.gc.ca</u>
- Scenarios and downscaling tools: <u>www.cccsn.ca</u>
- Climate Trends and Variations Bulletin: <u>http://ec.gc.ca/adsc-cmda</u>
- Snow Water Equivalent Maps: <u>www.ccin.ca</u>
- Climate Change Indicators with Statistics Canada
- >100 peer reviewed science publications per year
- Contributions to IPCC, Arctic Council, UNEP etc.

Page 17 – November 22, 2011

Informing Assessments on Climate Change Impacts

- NRCan "From Impacts to Adaptation: Canada in a Changing Climate"
- Health Canada "Human Health in a Changing Climate: A Canadian Assessment of Vulnerabilities and Adaptive Capacity"
- Federal, Provincial and Territorial Governments of Canada. Canadian Biodiversity: Ecosystem Status and Trends 2010. Canadian Councils of Resource Ministers. Ottawa, ON. 2010.
- NRTEE Climate Prosperity Reports 1 4, 2011

Page 18 – November 22, 2011

The Adaptation / Services Gap

- Between the "push info" and "pull info" functions
- Between climate science and the users
- Addressing the gap:
 - the applied science developed through close conversation between user and climate science expert to bring the right type of info at the right scale to the specific adaptation challenge.
- CESD Audit 2010: Undertake efforts to improve the coordination of provision of climate information, and to improve accessibility of information for users.

The boundaries are not distinct, and at various points all the players are partners

Page 20 – November 22, 2011

Environment

Canada

Environnement Canada

