How much has China warmed?

Sun Yat-Sen University 6 April 2016

Photo: F. Zwiers (Lijiang countryside

Francis Zwiers, Pacific Climate Impacts Consortium University of Victoria, Victoria, Canada

Outline

- Introduction
- Urban warming effect
- Previous estimates
- Detection and attribution
- Application to quantifying urban warming
- Conclusions

Introduction

- China's surface temperature record indicates 1.44°C (90% confidence interval [1.22-1.66°C]) of warming over 1961-2013 (53 years)
- The global mean land temperatures warmed 1.09°C [0.86-1.31°C] over 1951-2010 (60 years)
- Why did China warm so much more quickly?
- One possibility is that the Chinese temperature record might be contaminated by the expansion of urban heat islands over this period
- This would lead an over-estimate of the average
 amount of warming across China

Introduction

Urban areas cover <1% of China's land mass

- But most observing stations subject to some kind of urban influence
- China's National Meteorological Information Centre provides 2419 homogenized stations (blue) for 1951-2013
- Ren et al (<u>2015</u>) identify 143 "rural" reference stations (yellow)

 Usual approach, which compares rural stations with all stations is uncertain and possibly biased low

How much did China really warm, and why?

Urban warming effect

Photo: F. Zwiers (Lanzhou)

Urban heat island effects

- Long-recognized effect (e.g., Howard, 1833)
- Location and history dependent
- London (Jones et al, 2008)
 - trends similar in urban and rural areas
 - urban region about 1.5-2.0°C warmer.
- New York City (Gaffin et al, 2008)

- suggest skyline development may have played a role
- China (Jones et al, 2008)
 - rapidly developing
 - perhaps more than half of warming since 1954
 - very difficult to isolate UHI intensification from available data (very little rural data available)

Urban warming – London, UK

London Weather Centre St. James Park Heathrow Airport

Gatwick Airport Rothamsted

- Rural, suburban and urban trends similar
- Notice also the common variability

Urban warming - NYC

8

Previous estimates of urban warming influence on China's temperature record

Urban warming effects on Chinese data

- Jones et al (2008) compare land temperatures with SSTs
- Land temperatures warmed 1.19°C to 1.35°C over 1951-2004 (depending on dataset used)
- Nearby SSTs warmed 0.76°C

1920

3

0

-1

-2

-3 1900

Anomalies - deg.C

Jones et al suggest difference is due to urbanization effect (~0.5°C, or $\sim 40\%$ of recorded warming)

Urban warming effects on Chinese data

 Ren et al. (2015) compare rural reference stations with all stations (reference climate network and basic meteorological network) combined

 Difference ≈25% of recorded warming over 1961-2004 (0.32°C of 1.28°C)

Detection and attribution of Long Term Climate Change

Photo: F. Zwiers (Ring-Necked Duck, Victoria)

Some definitions

- Detection of change is the process of demonstrating that the climate or a system affected by the climate has changed in some defined statistical sense
- Attribution is the process of evaluating the relative contributions of multiple causal factors to a change or event with an assignment of statistical confidence
- Casual factors refer to *external influences*
 - Climate: *anthropogenic* and/or *natural*
 - Systems affect by climate: *climate change*

Methods

- Involve simple statistical models
- Complex implementation due to data volumes (which are both small and large)

Usual assumptions

- Key forcings have been identified
- Signals and noise are additive
- Model simulation of large-scale forcing response patterns ok, but signal amplitude is uncertain
- \rightarrow leads to a regression formulation

That formulation has been evolving

$$\mathbf{Y} = \sum_{i=1}^{s} \beta_i \mathbf{X}_i + \boldsymbol{\varepsilon}$$

$$Y = Y^* + \varepsilon_y$$
$$X_i = X_i^* + \varepsilon_{x_i}$$
$$Y^* = \sum_{i=1}^{s} \beta_i X_i^*$$

$$Y = Y^* + \varepsilon_y$$
$$X_i = X_i^* + \varepsilon_{x_i}$$
$$Y^* = \sum_{i=1}^{s} X_i^*$$

- Hasselmann (1979, <u>1993</u>)
- Hegerl et al (<u>1996</u>, <u>1997</u>)
- Tett et al (<u>1999</u>)
- Allan and Stott (2003)
- Huntingford et al (2006)
- Hegerl and Zwiers (2011)
- Ribes et al (<u>2013a</u>, <u>2013b</u>)
- Hannart et al (<u>2014</u>)
- Hannart (2015, accepted)

• Ribes et al (in review)

Global mean temperature anomaly

0.0

cause of the observed warming since the mid-20th century.

See also Figure 10.1, IPCC WG1 AR5

Mechanics of the attribution process

- Gather observations Y
- Estimate signals X_i , i=1,...,s
- Fit the regression model
- Evaluate residuals and β_i , i=1,...,s
- Calculate trends in $\beta_i X_i^*$

Observed warming trend and 5-95% uncertainty range using HadCRUT4 (black).

Attributed warming trends with assessed *likely* ranges (colours) using CMIP5 historical and control simulations

Decomposing China's temperature record

Photo: F. Zwiers (Yangtze River)

Idea

- Recorded warming is the result of
 - Response to external forcing
 - Greenhouse gas increases (GHG)
 - Other Anthropogenic influences (OANT)
 - Solar and volcanic influences (NAT)
 - Effect of urbanization (URB)
 - Internal variability (noise)
- Use a detection and attribution method to decompose the observed temperature record into
 - 2 components + noise
 - ALL (GHG+OANT+NAT combined)
 - URB
 - 4 components + noise

Implementation

- Construct observational vector Y
 - Consider the period 1961-2012 (52 years)
 - Divide China into two parts (east and west)
 - Calculate 3-year mean temperature anomalies for each region (17 values for each region, ending with 2009-2011)
 - Append the 2012 anomaly as an 18th value to complete the record
 - Total length of Y is 2x18=36
- Estimate the ALL, GHG and NAT signals (X_{ALL}, X_{GHG}, X_{NAT}) from CMIP5 simulations
 - ALL: 23 models, 108 simulations
 - GHG: 7 models, 33 simulations
 - NAT: 8 models, 36 simulations
- Estimate internal variability
 - Control simulations (41 models, 346 chunks) and within-ensemble differences

Observed and simulated mean temperature change in China

What about the URB signal?

- Use sigmoid functions (continuous, positive, with 0 and 1 as left and right asymptotes)
- 3-parameter logistic function

$$f(t) = L/(1 + e^{-k(t-t_0)})$$

- $-t_0$ is the midpoint
- -L is the maximum
- -k is the steepness
- Fit these functions to urban rural temperature differences
- Separate functions for east and west China

Why sigmoid functions?

- The urbanization effect is unlikely to be reversed
 The URB signal should be monotone increasing
- The urbanization effect does not increase temperatures indefinitely
 - The URB signal should asymptote at some level after the urban heat island is established
- The urbanization effect is established slowly as an urban center expands; we assume minimal urbanization effects during the 1960's and 1970's
- The regional URB signal in eastern China will be different from that in western China.

URB signal estimates

Area weighted combined urbanrural warming is about 0.27°C

a) Eastern China

URB signal uncertainty

Based on a bootstrapping approach

Shading indicates 5-95% amongst 1000 bootstrap samples

Results – warming contributions

Photo: F. Zwiers (Emlyn Cove)

Conclusions

- China's observing system records temperatures that are broadly influenced by urban warming
- Thus the warming of the Chinese land-mass is likely overestimated
- Comparison between urban and rural stations appears to lead to an underestimate of the strength of the urbanization influence
- A detection and attribution formalism allows decomposition of China's temperature record into externally forced, urbanization induced and internal variability induced components of change
- Results suggest about 1/3rd of the recorded warming is due to urbanization
- Anthropogenic and natural external forcing combined are estimated to have caused 0.93°C [0.61-1.24], consistent with the observed global land mean warming 1.09°C [0.86-1.31]

Questions?

www.pacificclimate.org

Photo: F. Zwiers (Big Trout Lake, Algonquin Park)