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Climate change, extreme precipitation events, and
some implications for risk analysis
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* Observed warming and its causes

* Observed changes in precipitation extremes and causes
* Projections of future change

 Some implication for infrastructure design

 Some challenges

* Questions






Observed global surface temperature relative to 1850-1900

a) Change in global surface temperature (decadal average) b) Change in global surface temperature (annual average) as observed and
as reconstructed (1-2000) and observed (1850-2020) simulated using human & natural and only natural factors (both 1850-2020)
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IPCC WGI, 6t Assessment, Fig. SPM.1



Global surface temperature increase since 1850-1900 (°C) as a function of cumulative CO, emissions (GtCO,)
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Observed changes in precipitation extremes

* Observational studies suggest intensification is occurring
e Rate of intensification of annual max 1-day rainfall (Rx1day) is broadly
consistent with the Clausius-Clapeyron relation

* Growing number of studies of long-term changes in extreme
precipitation point to greenhouse gas emissions as the cause

e Minetal., 2011; Zhang et al., 2013; Dong et al., 2020; Kirchmeier-Young and
Zhang, 2020; Paik et al., 2020; Sun et al., 2022

* Nevertheless, local detection of change is still very hard
e Westra et al., 2013; Barbero et al., 2017; Li et al., 2019; Sun et al., 2021



Observed trends in annual maximum 1-day precipitation

7293 stations, 1950-2018

(b) Rx1day
Significant increase
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(c) Rxlday
Significant decrease

(a) Rxlday

Sun et al., 2021

Non-significant decrease ® Significant decrease Mann-Kendall test (2-sided,
5% significance level)



Estimated sensitivity to global warming

Estimate sensitivity at individual stations

(a) RX1day
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Attribution of changes in precip extremes




Detection and attribution directly on station data

Detection and attribution (D&A) studies look for evidence that the
climate model simulated responses to external forcing are present in
observations

They use regression models where the predictors are climate model
simulated responses to forcing

We recently developed a technique that
* |s adapted specifically to extremes
« Uses station values of In(Rx1day) as the predictand
» Uses climate models only to estimate the expected changes in In(Rx1day)

Why In(Rx1day)?

The CC relation suggests Rxlday should increase exponentially with
warming =2 In(Rx1day) should increase linearly

* This scaling should be independent of spatial scale differences (e.g., point
scale vs grid box scale) to first order



Trends (1950-2014) in log ©

CMIP6 signals transformed

nservations anad
nack to physical units

Trend (%/65yrs)

CMIP6 models (ALL and NAT forcing, 46 members each):

ACCESS-CM2, BCC-CSM2-MR, CanESM5, CNRM-CM6-1, CESM2, HadGEM3-

GC31, IPSP-CM6A-LR, MIROC6, MRI-ESM2-0, NorESM2-LM

Also separately used CanESM2 large ensembles (ALL and NAT
forcing, 50 members each)




2-signal D&A results (ANT and NAT forcings)
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1950-2014 changes in Rx1day attributed to ANT forcing

Intensity change (%)
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Change in global mean temperature relative to 1851-1900
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The link between global and local temperature change

Simulated change at 2 °C global warming Simulated change at 4 °C global warming
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IPCC WGI, 6t Assessment, Fig. SPM.5



The link between global temperature change and local annual
mean precipitation change

Simulated change at 2 °C global warming Simulated change at 4 °C global warming
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IPCC WGI, 6t Assessment, Fig. SPM.5



The link between global temperature change and local annual
mean soil moisture change

Simulated change at 2 °C global warming Simulated change at 4 °C global warming
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The future of precipitation extremes




Projected changes in 50-year 1-day precipitation extremes
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Projected changes in 50-year 1-day precipitation extremes

+1°C above 1985-2014 +3°C above 1985-2014

Li etal., 2021 Frequency ratio



Climate Change and Extreme Precipitation

* Global warming

— Global mean surface air temperature during 2001-2020 was about 1°C higher than during the
early industrial period 1850-1900 (IPCC, 2021)

— Canada has warmed about twice as fast as the global average, with more than double the rate of
global warming in the North (CCCR, 2019)

— Almost all of this warming is due to greenhouse gas concentration increases
* Impact on extreme precipitation

— Theory and climate models suggest that the intensity of extreme rainfall will increase about 6-7%
for each 1°C of warming

— Observed trends in extreme precipitation at long running meteorological stations across the
globe confirm that this is happening (Sun, et a, 2021)

— Local trends are noisy, however, making this change difficult to see at individual observing
stations

— Nevertheless, the evidence indicates that greenhouse gas increases have increased the risk of

extreme precipitation events (IPCC, 2021; Sun et al, 2022), including in North America
(Kirchmeier-Young et al, 2020)

* Climate change projections indicate that these risks will continue to increase (Li et al, 2021)
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Infrastructure design is a risk management exercise

Need to look forward in different
Historical magnitude of 50-year 1-day rainfall event
ways
 The PCIC Design Value Explorer is ’J
one general tool that might be used
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* [tincorporates an understanding of
the assessments of projected
climate change and provides
engineers with information about
how “climatic loads” needed to
apply the National Building Code of
Canada are projected to change.
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Infrastructure design is a risk management exercise

Future design values

R1d50 1-day rainfall, 1/50 (ratio) * Tier 2 variable « Future (1.0°C)

DVE provides change factors
that can be used to modify
historical design values

Given as a function of the
level of global warming
above the 1986-2016 mean

The change factor is
multiplicative for the 50-year
1-day rainfall amount (a “Tier
2” variable) and is based on
Clausius-Clapeyron
temperature scaling
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The DVE assumes Clausius-Clapeyron temperature scaling

] Total ] Thermodynamlc , ¢ Dynamic

The response
of extreme 6-
hourly
precipitation to
warming in
CanRCM4 (35-
member
ensemble,
1981-2100
under RCP8.5)
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Historical and future ENSO impact on 20-year Rx1day
« Based on CESM2, 50-member ensemble, SSP3-7.0, 2050-2099 vs 1950-1999

El Nino/ La Nlna |ntenS|ty difference Change in ENSO |mpact
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Infrastructure design is a risk management exercise

Also need to look “forward” by considering the likelihood of very rare, very
high impact, events (e.g., very long return period events)

Most climate change assessments deal with ordinary, frequently occurring
extremes (e.g., 20- or 50-year Rx1day events)

* We have at least some observational data covering that length of period

 Don’t need to extrapolate substantially beyond the available data
* More confident that climate models represent at least some of the relevant processes

But ... critical infrastructure needs to be resilient to much rarer events
corresponding to return periods of 1000’s of years

* Hospitals, other key public buildings, dams and spillways, communications systems,
power grid, etc.

Can we rely on standard tools, and if not, how do we get that information?
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Relative bias of extreme quantile estimates

100-year return level 1000-year return level

Relative bias in
extreme quantiles of oA
CanRCM4 simulated
1-hour precipitation {
accumulations for
1951-2000 based on
fitting a Generalized
Extreme Value (GEV)
distribution to 1750
annual extremes for
1951-2000
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GEV fits to block maxima at two locations

257

Extreme quantiles
based on 1750-years
of CanRCM4 simulated
1-hour precipitation
accumulations for
1951-2000

mmmmi Empirical distribution from
1750 annual maxima
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Relative bias of extreme quantile estimates

100-year return level 1000-year return level

Relative bias in
extreme quantiles of &,
CanRCM4 simulated
1-hour precipitation 3
accumulations for
1951-2000 based on
fitting a GEV
distribution to 175
decadal extremes for
1951-2000




Relative bias in 1000-year return level estimates for
6-hourly accumulations in CanRCM4 (1951-2000)

Compound Approach Univariate Approach Univariate Approach
(50-year sample of precip components (50-year sample of annual maxima) (1750-year sample of annual maxima)
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Some risk quantification (and mitigation) challenges

* Objectively distinguish between the impact of changes in the climate
hazard and the impact of changes in vulnerability

e Better quantify how the climate hazard changed over the last 50+ years
* There are substantial data, climate model and analysis technique limitations
* Yet, there is a demand for specificity (questions tend to be local)
 And, we are increasingly asked to extrapolate far into the upper tail

e Better quantify how the climate hazard change over the next 50+ years
* Projections indicate risks will increase, but confidence in the details remains low

* Convection permitting models may offer a path forward, but are VERY expensive

* Develop adaptation strategies for non-stationary climate conditions
* Engineering practice, for example, seems not to be ready
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Some relatively low-hanging fruit

e Extend “emergent constraints” to extreme precip (Li et al., 2023, in prep)

e |[nvest more deeply in learning to use products already available — we
can’t afford not to use available information because we don’t know how
— Assessments to assess what is known robustly (harder for smaller areas)
— For each product, develop an understanding of its “skillful” scale (old idea)
— Work with users to learn how to use information that is available at that scale

— Improve understanding of processes and scaling properties, including the
relationship between point scales and those that are skillfully resolvable in models

e |n parallel with model improvements, continue to develop statistical and
Al-based downscaling techniques and convection permitting model
emulators
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Email: fwzwiers@uvic.ca

Web: https://www.pacificclimate.org/

Sundown over Juan de Fuca Strait, Shirley, British Columbia. Photo: Francis Zwiers



