
 1 

Design Value Explorer: Methodology and Background Information 
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Pacific Climate Impacts Consortium 
 
General information about the climatic design values presented in the Design Value Explorer (DVE) and the 
methods used to process station data can be found in the National Building Code of Canada, Appendix C: 
Climatic and Seismic Information for Building Design in Canada (hereafter NBCC, 2015). The present document 
reviews the updates to the data presented there, including some methodological changes, and also describes 
the mapping method developed at PCIC that is an integral feature of DVE.  
 
1. Station data processing and updates 
 
PCIC obtained Canada-wide observational data from the Meteorological Service of Canada  (MSC), comprising 
more than 150 variables, some measured since the early 20th century, and created a dedicated database for use 
in this project. Additional snow observations from provincial snow monitoring networks collected by the MSC in 
Quebec and British Columbia were also obtained, with permission. These data include snow depth, snow density 
and snow water equivalent observations that are essential to meeting the building code needs for both snow 
and rain-on-snow loading.  

Processing procedures varied by the climatic design element, as described in NBCC (2015). Departures from 
these procedures are described below. For reference, Table 1 provides a summary of all data used to calculate 
each design value (DV), including the variable name, sampling frequency, period of record, and number of 
stations used after screening and quality control. For most variables, the quality checks applied are those 
summarized in Tables 1, 2 and 4 of Durre et al. (2010). 

1.1 Composite stations 
 
Station records used for design variable calculations need to satisfy minimum length constraints. For example, at 
least 20 years of annual maxima of snow depth were required for the 50-year snow load DV, while a minimum of 
8 years of complete hourly data (i.e., no missing hours) in January or July was required for the extreme lower 
and upper temperature percentiles. This disqualifies the majority of stations, which have shorter and/or 
incomplete records, and therefore constitutes an inefficient use of data. For several variables, composite 
stations were created by combining quality-controlled data from nearby short-record stations. The definition of 
‘nearby’ varied by the DV: for example, snow depth annual maxima from stations with a horizontal separation of 
< 50 km and an elevation difference of < 100 m were combined into composites. For precipitation, a much 
smaller separation of 5 km was used, due to the finer scale structure of that field. While the chosen separations 
are somewhat arbitrary, the corresponding scales reflect the smoother nature of an accumulated variable—
snow depth—versus a non-accumulated variable like precipitation. The addition of composites increased the 
number of analyzed stations modestly, by 5 to 9%, depending on the DV.  
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1.2 Precipitation 
 
1.2.1 Climatological precipitation and rainfall 
 
The previous analysis underlying NBCC (2015) used daily precipitation and rainfall data from stations over the 
interval 1961-1990. In addition to incorporating data from more recent decades, we introduced a method to 
make maximal use of station records with data in the longer interval (1961-2016) but that may have significant 
gaps. Referred to as the day-over-years (DoY) approach, a given station was required to have a minimum 
number of values occurring on each of January 1st, January 2nd, and so on, but contiguous values within any 
given calendar year were not required (and leap days were ignored). This procedure makes maximal use of the 
available data (e.g., 1386 stations using DoY compared to 965 stations for a 25-year climatology), under the 
assumption that climatological characterization is the principal interest.  
 

Table 1. List of MSC variables analyzed, and properties of the subsetted data after completeness screening and quality 
control. The period of record and station totals include composite stations.  

MSC variable Sampling frequency Period of 
record 

No. stations (screened) 

Snow depth daily 1945-2017 520 
Air temperature daily 1982-2018 1322 
Air temperature  hourly 1982-2018 531 (Jan) – 537 (Jul) 
Dewpoint 
temperature 

hourly 1961-2016 202 

Wet bulb 
temperature 

hourly 1982-2018 564 

Relative humidity hourly 1980-2018 554 
Precipitation daily (for climatology) 1961-2016 1390 
Rainfall daily (for climatology) 1961-2016 1386 
Rainfall daily (for extremes) 1947-2017 2116 
Rainfall 5-min,10-min,15-min,30-min, 

1-hr,2-hr,6-hr,12-hr,24-hr 
1960-2017 547-640, depending on 

duration 
 

 
 
1.2.2 Daily and sub-daily rainfall 
 
An extensive analysis of one-day rainfall amounts at stations with 20 years or more of measurements was 
conducted. Since annual extrema of daily rainfall are required for the calculation of the 50-year return level of 
one-day rain, R1d50, 100% completeness of data within each year is desired. For this reason, the DoY approach 
used for climatologies is not appropriate. However, station records with gaps were still considered, by applying   
the method of Papalexiou & Koutsoyiannis (2013) which recognizes that high-ranking annual extremes are often 
preserved in incomplete records. Use of this procedure permitted an increase in the sample size by 15%. Annual 
maxima were fit using a Gumbel distribution and method of L-moments to estimate R1d50. The decision to use 
the Gumbel distribution fitted by the method of L-moments was based on extensive testing of several 
combinations of extreme value distributions and fitting methods. Daily maxima of interval rainfall from the MSC 
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DLY03 dataset (MSC, 2020) were analyzed for intervals ranging from 24 hours down to 5-min. The 10-year return 
level of 15-minute rainfall, R15m10, was computed in the same manner as for R1d50.  
 
 
1.3 Relative humidity 
 
Annual mean relative humidity (RH), an element of the Canadian Highway Bridge Design Code, was constructed 
from hourly RH measurements at stations with data from 1980 onward, to avoid a pervasive inhomogeneity 
issue prior to this time identified by Vincent et al. (2007). To maximize the number of stations (and so spatial 
coverage), climatologies were constructed from gap-filled 10-year records. Relatively short 10-year records were 
used to maximize station coverage after determining that the 10-year climatologies were statistically 
indistinguishable from 20-year climatologies at locations where both could be computed.  
 
 
1.4 Snow and rain-on snow load 
 
A systematic re-evaluation of ground snow loads over Canada was conducted using a methodology that 
improved upon NBCC (2015) in several respects. Two independent sources of historical ground snow data were 
employed: daily snow depth (SD) measurements from the MSC for 4412 stations, and the Manual Snow Survey 
data set, comprising snow water equivalent (SWE) data collected from 3320 locations, none exactly coincident 
with a MSC station. These extensive data along with a regional snow climate classification scheme (Sturm et al., 
1995) were used to develop power-law relationships between annual maximum SD and SWE over Canada, 
allowing the derivation of a regional ‘pseudo-density’ relating the two variables and an annual maximum SWE 
time series at each MSC station (Wilks and McKay, 1996). After extensive quality control, an extreme value 
analysis was then applied to these time series to estimate the 50-year return level of annual maximum SWE and 
the corresponding snow load (SL50) at over 500 MSC stations across Canada. A subsequent analysis of 
temporally consistent rainfall data resulted in the estimation of the 50-year return level of rain-on-snow loads at 
the same locations.  
 
1.5 Wind loads 
 
Unlike other DVs, estimates of station-based wind speed extremes were obtained from the Engineering Climate 
Services Unit and those for station-based wind pressures conditional on the occurrence of rainfall above a 
specified threshold (1.8 mm h-1) were obtained from the Climate Research Division of ECCC. PCIC used station-
based estimates of the n-year return level of height- and exposure-adjusted wind speed from the former to 
derive the corresponding return level of wind pressure, WPn, at each station (where n = 10 or 50). Station-based 
estimates of 5-year driving rain wind pressure, DRWP5, provided by the Climate Research Division were used 
directly. Following the usual NBCC practice, “floor values” were applied to  WP10 (0.23 kPa), WP50 (0.3 kPa) and 
DRWP5 (40 Pa) before the spatial interpolation. 
 
2. Using regional climate model simulations to inform design value estimates 
 
The relatively sparse distribution of meteorological stations over most of Canada, coupled with the fact that 
many of these stations cover periods that are too short to allow reliable estimates of DVs, creates challenges for 
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traditional interpolation methods. We therefore developed a mapping method that blends station based DV 
estimates with output from a regional climate model, here the Canadian Regional Climate Model, Version 4 
(CanRCM4), to improve design value interpolation in data-sparse areas. A full description of the model, and its 
merits and limitations with respect to simulating DVs over Canada, is given in the comprehensive report of 
Cannon et al. (2020). CanRCM4’s performance in simulating several key climate variables underlying the DVs 
over North America has been evaluated for temperature and precipitation extremes (Whan and Zwiers, 2016; Li 
et al., 2019), mean precipitation (Diaconescu et al., 2016), and surface wind speed (both annual values and 
extremes) and driving rain wind pressure (Jeong, Cannon and Morris, 2020). 
 
Three key goals of the desired mapping method are: 1) it should be objective, in the sense that reconstructed 
DVs are produced without explicit ad-hoc or expert adjustments; 2) the final map should have a higher spatial 
resolution than the native RCM (45 km, true at 60 ºN), in order to provide values at the community scale while 
allowing variation between communities in the same region (we set this target resolution to be ~4.5 km, or ten 
times finer than the native model grid), and; 3) it should also provide maps of future projected changes to DVs 
indexed to different levels of global warming (see ff., Section 4).  
 
2.1 Model pre-processing 
 
Two separate ensembles of initial condition simulations from CanRCM4 were used, a 35-member set with 
output provided at daily time resolution was used to calculate most DVs, while a 15-member set with hourly 
archived results was used for DVs that were based on hourly extremes. While any individual realization could be 
considered analogous to the observed climate system, we utilized the ensemble mean of the 35 (or 15) 
members to create a single smoother representation that is less affected by natural, unforced, climate 
variability.  

CanRCM4 employs a horizontal grid of 130 by 155 points on a polar stereographic projection covering the 
entirety of North America except for the portion north of ~75 ºN. The grid is irregularly spaced in latitude and 
longitude, but regularly spaced at 0.44º × 0.44º in a rotated pole projection. After calculating the desired DV on 
the native CanRCM4 grid, the model land mask is applied. Each land grid cell in the rotated coordinate system 
was then divided into a 10 x 10 array, and the new grid cell centres used for bilinear interpolation. The target 
grid produced in this way has a nominal resolution of 4.5 km, true at 60 ºN. However, the coarse representation 
of coastlines in CanRCM4 is problematic; specifically, the locations of many coastal meteorological stations and 
city/town centres listed in Table C-2 of the NBCC fall outside the land mask of the final, high-resolution target 
grid. To correct this, a second fine-scale land mask was created from a high-resolution (50-m) vector of the 
Canadian coastline, obtained from Natural Earth, https://www.naturalearthdata.com/. Any grid cell on the 
target grid that intersects the high-resolution coastline was assigned to the target grid land mask. To assign 
values of the DV field at the target grid cells land grid cells lying outside the CanRCM4 land mask (except in the 
high Arctic, which is treated separately; see below), a nearest-neighbour approach is used. The closest land 
value in the DV field at the target resolution, masked by the original CanRCM4 land mask, is assigned to these 
grid cells. CanRCM4 cells that lie outside the high-resolution coastline and the borders of Canada are excluded 
from the target map. The result of this procedure is illustrated in Figure 1, while the entire model preprocessing 
procedure is outlined in Figure 2. 
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Figure 1. Result of the model preprocessing steps outlined in Figure 3. Left: Land-masked CanRCM4 DV field on the native 
model grid. Right: Close-up of the same DV field on the target grid, showing the refined land mask constructed from the 50-
m resolution Canadian coastline from Natural Earth. The region shown is coastal British Columbia, with Haida Gwaii at top 
left, Vancouver Island at lower centre. The DV shown is the 50-year return level of annual maximum snow load (SL50, in kPa). 

 

 

 

Figure 2. Flowchart illustrating the steps involved in preprocessing the CanRCM4 model output for use in the hybrid spatial 
mapping method.  
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2.2 Spatial mapping method 
 

2.2.1 Incorporation of station values 
 
The main goal is to use the spatially complete, two-dimensional DV fields from CanRCM4 to guide interpolation 
between observationally-derived DVs at stations. Hence the principal utility of the model is in the spatial 
pattern, and only secondarily in the magnitude, of the DV field it simulates. The key steps of the method, which 
we refer to as hybrid spatial mapping (HSM), are outlined in Figure 3. RCM values Mi are generally biased 
relative to observations, and thus station values Si are often used to bias-adjust the models in some fashion. 
After model pre-processing, the mean model bias over a region of interest (comprising i = 1,…, NS stations) is 
removed by the simple rescaling 

M’j = (⟨Si ⟩/⟨Mi⟩)Mj ,  j = 1, …, Nm 	 	 	 (1) 

where ⟨・⟩	denotes the arithmetic average over the station locations i and the index j ranges over all model grid 
cells Nm (at the target resolution) in the region of interest.  

Next, we define the bias ratio Bi = Si/M’i and aim to find a method that, first, interpolates this quantity to all j 
locations on the target grid, Bj, and second, brings Bj as close to unity as possible at each point in the region 
(since Bj = 1, j = i, indicates no bias). Given such a method, the final step is to estimate the local DV field through 
multiplication of the interpolated bias Bjʹ by the rescaled model field, Mjʹ, the adjusted model DV field at the 
target resolution. That is, we “reconstruct” the DV field as:  

Rj  = Mjʹ Bjʹ.      (2) 

If, for example, the chosen interpolation method happens to be exact at the station grid cells, then Biʹ  = Bi and Ri  
= Mjʹ (Si/ Mjʹ) = Si ; i.e., the reconstruction matches the station value exactly at these grid locations. At grid cells 
away from stations, i.e. over the majority of the domain, Rj incorporates both station and model information in a 
manner that automatically applies a weighting between the two according to station proximity. 

For the interpolation we use ordinary kriging (ORKG), which is designed to construct the best linear unbiased 
estimator of predicted field values (Isaacs and Srivastava, 1989). The spatial structure of the DV field 
surrounding each station is approximated by an isotropic, exponential covariance function with three 
parameters (nugget, sill and range). We allow for a positive, non-zero nugget, indicating a discontinuous 
variogram at zero separation. Hence, while the interpolation does not exactly match the station values, it does 
account for unknown measurement errors, resulting in a smoother field. ORKG is applied at the regional scale to 
the discrete bias field Bi, with parameters estimated by maximum likelihood estimation (MLE). The ORKG-MLE 
method converges to parameter estimates that minimize the error variance of the set of j estimated values Bjʹ 
across the entire domain of interest. This makes the method preferable to purely mathematical interpolation or 
curve-fitting techniques that do not explicitly account for the local spatial covariance structure that is a feature 
of most physical fields. 

In order to apply HSM over the entirety of Canada, we implemented ORKG-MLE in a moving polygon mode, with 
each polygon defined by the k nearest stations to a target station (we chose k = 30; see, e.g., Haas [1990]). This 
allows for regionally varying covariance parameters since, although the form of the covariance function is kept 
fixed in each polygon, the anisotropic station distribution is reflected in the varying size and location of the 
polygons. Significant overlap was allowed to avoid edge discontinuities. Once every station has acted as a target, 
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the mean value of Bjʹ over all overlapping polygons is computed at each target grid cell j. In station-rich areas, 
more windows are averaged than in station-poor areas, reducing measurement error in the former regions. 

 

 

Figure 3. Flowchart illustrating various steps in the hybrid spatial mapping (HSM) method. The steps leading to the pre-
processed model inputs at upper right are shown in Figure 2. 
 

2.2.2 Regions outside the model domain: Border areas and the Upper Arctic Archipelago 
 
After moving window averaging, the resulting bias field 𝐵'(  covers most of Canada. However, since the moving 
window method is station-based, certain coastal portions and station-poor areas near the borders of the map, 
e.g. in Northern Canada, are not covered by a window. We therefore filled each of these missing grid cells with a 
𝐵'(   value copied from the nearest grid cell (Fig. 2). The reconstruction then proceeded according to eq. (2), with 
the grid-wise multiplication of 𝐵'(  by the model DV field, Mj , to produce the reconstructed field Rj. 
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The domain of CanRCM4 extends no further north than 75 ºN, presenting the challenge of reconstructing values 
in a region (hereafter referred to as the Upper Arctic Archipelago, or UAA) where the bias ratio, Bi , cannot be 
computed. We take the UAA to comprise the islands north of the continuous ocean passage stretching from 
M'Clure Strait in the west to Barrow Strait in the east. Station density is also very sparse in this area (typically 0-4 
stations, depending on the DV), meaning that direct interpolation of station DVs is not a viable option. We use 
two sources of information for the UAA reconstructed values. First, we take the arithmetic mean of all available 
stations DVs in the UAA, 𝑆+̅,,. If no UAA stations are available, we assign the DV of the northernmost station on 
the map to 𝑆+̅,,. Second, we make use of reconstructed values RLAA,j from the nearby islands to the south of this 
channel (where LAA denotes the Lower Arctic Archipelago). Specifically, we take the arithmetic mean of all land-
only target grid values in a thin strip between 72 ºN and 73 ºN, denoting this quantity as 𝑅./,,. The final UAA 
value is then defined as the mean of the averaged UAA station and LAA reconstruction means: 

 𝑅.+,, =
1
2
	(𝑅./,, +	𝑆+̅,,).    (3) 

Note that over the UAA, Rj = 𝑅.+,,  is taken as a single, spatially constant DV. In our view, the paucity of stations 
and complete absence of model values does not justify a spatially varying reconstruction in this region. With the 
Rj values in the UAA now fixed, this completes the Canada-wide reconstruction of the DV field. 

 
3. Example and comparison with NBCC (2015) 
 
The final result of the HSM procedure for SL50 is shown in Figure 4, which also shows the pre-processed 
CanRCM4 and station DVs used as input to the HSM method. We draw attention here to some key 
characteristics of the reconstructions.  

The complete set of reconstructions for all DVs, along with the corresponding input station and CanRCM4 maps, 
reveals that the overall goals of the method have been met. Specifically, the HSM method is objective and 
optimal, in the sense that it evidently produces a reconstruction whose resemblance to station DVs is high 
where station density is high, and whose resemblance to the spatial pattern of model DVs is high where stations 
are sparse or absent. The upper left panel of Fig. 4 illustrates the effect of HSM on the empirical distribution of 
the input data for the SL50 DV. The CanRCM4 distribution is characterized by values that are quite centrally-
concentrated with a low median, few large values, and positive skewness, while the station observations exhibit 
a broader spatial distribution with a higher median, but again with positive skewness and a long upper tail. The 
distribution of the HSM reconstruction resembles that of the stations much more than that of the model, with a 
median DV close to the station median. In particular, the reconstruction adds more values between 5 and 10 kPa 
than are present in the model, bringing it more into line with the station distribution. However, the 
reconstruction also has a lower maximum DV compared to both the model and stations, at ~15 kPa compared 
to > 20 kPa. The lower maximum is an expected consequence of using a spatial interpolation technique that 
accounts for a local “nugget” effect that is designed to account for uncertainty in local design value estimates. 
This differs from an interpolating technique that requires smooth interpolating surfaces to pass through all 
stations (i.e., a zero nugget). 

We caution that despite the evident success of HSM in bringing the reconstructed DVs into line with station 
values, comparison with the NBCC (2015) Table C-2 values may reveal both random and systematic differences. 
First, the station-based DVs used as input to the HSM differ from those underlying NBCC (2015), both because 
the input data have been extended to 2018 (in most cases) and because analysis methods used to derive many 
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of the DVs have been modified (see Section 1). Second, the use of a new, objective interpolation methodology 
would be expected to lead to some differences.. Although we feel that that the objective, RCM-based method is 
preferable, biases may nevertheless result where the station density is low and/or where local topographic 
influences are unresolved by the model. Finally, while the reconstructions are rendered at fairly high resolution, 
they may inherit model bias from larger scales, particularly in areas where station data are sparse. 
 

 
 

Figure 4. Upper left: Empirical spatial distribution function (“violin plot”) of the SL50 DV. Blue shows the distribution of 
model design values amongst grid boxes containing stations, green shows the distribution for design values at stations, and 
salmon shows the distribution of reconstructed design values amongst grid boxes containing stations. The horizontal axis 
indicates design value magnitudes, and the width of the “violin” describes the relative frequency of occurrence of those 
design values. Upper right: Map of SL50 at stations, Lower left: CanRCM4 ensemble mean map of SL50. Lower: Final 
reconstruction, Rj, of the SL50 DV.  

 
4. Future-projected design value estimates 
 
4.1 Presentation of climate projections as a function of global temperature change 
 
As described in the comprehensive report of Cannon et al. (2020), ECCC and PCIC used CanRCM4 to derive 
future DV fields under a high-emissions greenhouse gas scenario (RCP8.5). Consistent with the approach taken 
in international climate policy, which is focused on specific global warming levels, like 2.0°C above pre-industrial 
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levels, the DVE presents model projections of DV changes at specified levels of annual mean global surface air 
temperature change (∆T) rather than during fixed time periods. Framing climate projections in this way shifts 
the impact of scenario uncertainty from the magnitude of change to the timing of ∆T increases: the relationship 
between the two can be seen in Table 2. The timing of warming was assessed at fixed levels of global mean ∆T = 
0.5°C, …, 3.5°C, in 0.5°C increments, from a historical baseline of 1986-2016. Specifically, we determined the 
year by which global warming permanently surpasses these levels averaged across an ensemble of climate 
change simulations consisting of one run from each of the Coupled Model Intercomparison Project Phase 5 
(CMIP5) models. As shown in Table 2, the closer the future time horizon, the less sensitivity there is to different 
emissions pathways (RCPs+.  

Table 2. Timing of projected global warming. The year at which the indicated global mean warming DT relative to 1986-
2016 is irrevocably exceeded by the CMIP5 single-member per model ensemble mean, under different Representative 
Concentration Scenarios (RCPs). Model results were obtained from KNMI Climate Explorer https://climexp.knmi.nl/start.cgi. 
A dash (“-”) indicates that the corresponding DT is not reached before 2100 for that RCP. Results from different RCPs are 
averaged if the years of exceedence are within 6 years of each other.  

 
Global DT RCP8.5 RCP6.0 RCP4.5 RCP2.6 

0.5°C 2023 
1.0°C 2035 2046 - 
1.5°C 2047 2070 - 
2.0°C 2059 2087 - - 
2.5°C 2069 - - - 
3.0°C 2080 - - - 
3.5°C 2090 - - - 

 

 
 
4.2 Future climate projections as change factors 
 
The DVE provides future-projected changes relative to baseline values either as increments (for temperature-
related DVs) or multiplicative factors (for all other DVs). So, for example, if at a given location the change factor 
(CF) for JulT2.5 at a global DT of 3.0°C is provided as 2.2, then 2.2°C should be added to the 1986-2016 reference 
value for JulT2.5. Alternatively, if the CF for R1d50 is provided as 0.94 for a given level of global DT, then the 
reference value for R1d50 at that location should be multiplied by 0.94. Change factors for future IDF curves (the 
design variable IDFCF in the corresponding DVE menu) are to be interpreted similarly. As described more fully in 
the Cannon et al. (2020) report, the ability of CanRCM4 to accurately simulate short duration rainfall at the local 
scale is very limited. Therefore, as recommended in the report, we assume that the rainfall intensity at all 
durations increases according to the multiplicative CF  
 

CF = (1 + 𝛼)∆Tloc      (4) 

 
where 𝛼 = 0.07 corresponds to the Clausius-Clapeyron rate of ~7% per °C for the increase of the water vapour 
content of air with increasing temperature and ∆Tloc is the local air temperature change as simulated by the 
CanRCM4 model ensemble mean (or more precisely, the closest grid cell value in the model to a geographic 
location of interest) that corresponds to one of the selected changes in global mean temperature, DT. Future 
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periods for calculating ∆Tloc are defined according to the global mean temperature change, ∆T in Table 2. Thus, 
since ∆Tloc is a function of global ∆T and geographic location, so is the CF. We therefore constructed maps, first 
at the model native resolution of 45 km (true at 60°N) and then at 10 times higher resolution, of CFs for 
different levels of global warming.  
 
 

 

Appendix: Software implementation 

The software implementation of the method in Python and R, climpyrical, was developed over the course of 
the project and makes use of a number of publicly available routines. The ORKG-MLE method was implemented 
using the R Statistical Computing package (R Core Team, 2020), specifically the routine spatialProcess included in 
the library fields (CRAN, 2019; Wiens and Krock, 2019). Since the rest of the analysis was implemented in Python 
(Python Software Foundation, 2020), the spatialProcess routine was called from the Python package rpy2 
(Gauthier, 2020). Other Python routines utilized include: NumPy (Oliphant, 2006) for main matrix operations; 
Pandas (McKinney et al., 2010) for station data processing; GeoPandas (Jordahl, 2014) for mask generation and 
coordinate transformations; and Scikit-Learn (Pedregosa, 2011) and SciPy (Virtanen, 2020) for nearest neighbour 
and interpolation modules.  
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